数据产生:
网站:用户每次点击
手机:位置和速度
智能手表、手环:心率、行动、饮食、睡眠
智能汽车:驾驶习惯
智能家居:生活习惯
数据科学家
从混乱数据中理出价值的人
寻找关键联系人
根据⽤户⽹络关系数据识别关键联系人
用户列表
users = [
{ "id": 0, "name": "Hero" },
{ "id": 1, "name": "Dunn" },
{ "id": 2, "name": "Sue" },
{ "id": 3, "name": "Chi" },
{ "id": 4, "name": "Thor" },
{ "id": 5, "name": "Clive" },
{ "id": 6, "name": "Hicks" },
{ "id": 7, "name": "Devin" },
{ "id": 8, "name": "Kate" },
{ "id": 9, "name": "Klein" },
{ "id": 10, "name": "Jen" }
]
用户好友关系
friendships = [(0, 1), (0, 2), (1, 2), (1, 3), (2, 3), (3, 4),
(4, 5), (5, 6), (5, 7), (6, 8), (7, 8), (8, 9)]
为每个用户创建朋友列表
for user in users:
user["friends"] = []
填充好友数据
for i, j in friendships:
users[i]["friends"].append(users[j])
users[j]["friends"].append(users[i])
问题: 平均朋友联系数是多少?
答: 全部联系数除以用户个数
def number_of_friends(user):
return len(user["friends"])
total_connections = sum(number_of_friends(user) for user in users) # 24
num_users = len(users)
avg_connections = total_connections / num_users # 2.4
按朋友数多少排序
# 取(user_id, number_of_friends)
num_friends_by_id = [(user['id'], number_of_friends(user)) for user in users]
sorted(num_friends_by_id, key=lambda item: item[1], reverse=True)
案例: 你可能知道的人
找朋友的人
def friends_of_friend_ids_bad(user):
return [foaf["id"]
for friend in user["friends"]
for foaf in friend["friends"]]
查找共同的朋友
from collections import Counter # not loaded by default
def not_the_same(user, other_user):
return user["id"] != other_user["id"]
def not_friends(user, other_user):
return all(not_the_same(friend, other_user)
for friend in user["friends"])
def friends_of_friend_ids(user):
return Counter(foaf["id"]
for friend in user["friends"]
for foaf in friend["friends"]
if not_the_same(user, foaf)
and not_friends(user, foaf))
print(friends_of_friend_ids(users[3]))
找共同兴趣的人
interests = [
(0, "Hadoop"), (0, "Big Data"), (0, "HBase"), (0, "Java"),
(0, "Spark"), (0, "Storm"), (0, "Cassandra"),
(1, "NoSQL"), (1, "MongoDB"), (1, "Cassandra"), (1, "HBase"),
(1, "Postgres"), (2, "Python"), (2, "scikit-learn"), (2, "scipy"),
(2, "numpy"), (2, "statsmodels"), (2, "pandas"), (3, "R"), (3, "Python"),
(3, "statistics"), (3, "regression"), (3, "probability"),
(4, "machine learning"), (4, "regression"), (4, "decision trees"),
(4, "libsvm"), (5, "Python"), (5, "R"), (5, "Java"), (5, "C++"),
(5, "Haskell"), (5, "programming languages"), (6, "statistics"),
(6, "probability"), (6, "mathematics"), (6, "theory"),
(7, "machine learning"), (7, "scikit-learn"), (7, "Mahout"),
(7, "neural networks"), (8, "neural networks"), (8, "deep learning"),
(8, "Big Data"), (8, "artificial intelligence"), (9, "Hadoop"),
(9, "Java"), (9, "MapReduce"), (9, "Big Data")
]
def data_scientists_who_like(target_interest):
return [user_id
for user_id, user_interest in interests
if user_interest == target_interest]
每次搜索都要遍历列表,性能差,建立一个字典
from collections import defaultdict
user_ids_by_interest = defaultdict(list)
for user_id, interest in interests:
user_ids_by_interest[interest].append(user_id)
interests_by_user_id = defaultdict(list)
for user_id, interest in interests:
interests_by_user_id[user_id].append(interest)
找与指定用户爱好最多相似的用户
def most_common_interests_with(user_id):
return Counter(interested_user_id
for interest in interests_by_user_id[user_id]
for interested_user_id in user_ids_by_interest[interest]
if interested_user_id != user_id)
案例:工资与工作年限
salaries_and_tenures = [(83000, 8.7), (88000, 8.1),
(48000, 0.7), (76000, 6),
(69000, 6.5), (76000, 7.5),
(60000, 2.5), (83000, 10),
(48000, 1.9), (63000, 4.2)]
绘图
def make_chart_salaries_by_tenure():
tenures = [tenure for salary, tenure in salaries_and_tenures]
salaries = [salary for salary, tenure in salaries_and_tenures]
plt.scatter(tenures, salaries)
plt.xlabel("Years Experience")
plt.ylabel("Salary")
plt.show()
make_chart_salaries_by_tenure
按工作作年线算平均收入
salary_by_tenure = defaultdict(list)
for salary, tenure in salaries_and_tenures:
salary_by_tenure[tenure].append(salary)
average_salary_by_tenure = {
tenure : sum(salaries) / len(salaries)
for tenure, salaries in salary_by_tenure.items()
}
分组后计算
def tenure_bucket(tenure):
if tenure < 2: return "less than two"
elif tenure < 5: return "between two and five"
else: return "more than five"
salary_by_tenure_bucket = defaultdict(list)
for salary, tenure in salaries_and_tenures:
bucket = tenure_bucket(tenure)
salary_by_tenure_bucket[bucket].append(salary)
average_salary_by_bucket = {
tenure_bucket : sum(salaries) / len(salaries)
for tenure_bucket, salaries in salary_by_tenure_bucket.items()
}
案例:兴趣主题
words_and_counts = Counter(word for user, interest in interests for word in interest.lower().split())
for word, count in words_and_counts.most_common():
if count > 1:
print(word, count)
网友评论