一、官网Hive存储格式
官网所列:
file_format:
: SEQUENCEFILE
| TEXTFILE -- (Default, depending on hive.default.fileformat configuration)
| RCFILE -- (Note: Available in Hive 0.6.0 and later)
| ORC -- (Note: Available in Hive 0.11.0 and later)
| PARQUET -- (Note: Available in Hive 0.13.0 and later)
| AVRO -- (Note: Available in Hive 0.14.0 and later)
| JSONFILE -- (Note: Available in Hive 4.0.0 and later)
| INPUTFORMAT input_format_classname OUTPUTFORMAT output_format_classname
实际业务中我们只需掌握:
file_format:
: SEQUENCEFILE
| TEXTFILE -- (Default, depending on hive.default.fileformat configuration)
| RCFILE -- (Note: Available in Hive 0.6.0 and later)
| ORC -- (Note: Available in Hive 0.11.0 and later)
| PARQUET -- (Note: Available in Hive 0.13.0 and later)
二、存储格式测试
1、SEQUENCEFILE 序列化(K-V)
![](https://img.haomeiwen.com/i9221434/8aa515a5769d5b1c.png)
我Hive中一张textfile为存储格式views表,大小为18.1M
[hadoop@hadoop000 data]$ hadoop fs -du -s -h /user/hive/warehouse/g6_hadoop.db/views
18.1 M 18.1 M /user/hive/warehouse/g6_hadoop.db/views
现在我们创建一张和views一样表结构的views_seq表,只是存储格式改为SEQUENCEFILE
create table views_seq(
track_time string,
url string,
session_id string,
referer string,
ip string,
end_user_id string,
city_id string
) row format delimited fields terminated by '\t'
stored as sequencefile ;
将views表数据插入views_seq表中
insert into table views_seq select * from views;
对比原始大小:
[hadoop@hadoop000 data]$ hadoop fs -du -s -h /user/hive/warehouse/g6_hadoop.db/views
18.1 M 18.1 M /user/hive/warehouse/g6_hadoop.db/views
[hadoop@hadoop000 data]$ hadoop fs -du -s -h /user/hive/warehouse/g6_hadoop.db/views_seq
19.6 M 19.6 M /user/hive/warehouse/g6_hadoop.db/views_seq
[hadoop@hadoop000 data]$
会发现会比原始数据还要大,所以此存储格式一般很少用
2、RCFILE 行列混合
现在我们创建一张和views一样表结构的views_rc表,只是存储格式改为RCFILE,并将views表数据插入views_rc表中。
对比原始大小:
[hadoop@hadoop000 data]$ hadoop fs -du -s -h /user/hive/warehouse/g6_hadoop.db/views
18.1 M 18.1 M /user/hive/warehouse/g6_hadoop.db/views
[hadoop@hadoop000 data]$ hadoop fs -du -s -h /user/hive/warehouse/g6_hadoop.db/views_rc
17.9 M 17.9 M /user/hive/warehouse/g6_hadoop.db/views_rc
查询没有做什么优化,只是节省了10%的存储空间
3、
![](https://img.haomeiwen.com/i9221434/6076f51746515a65.png)
ORC引入stripes的概念,从而使查询性能非常好,生产上大多数都使用的ORC。
现在我们创建一张和views一样表结构的views_orc表,只是存储格式改为orc,并将views表数据插入views_rc表中。
create table views_orc(
track_time string,
url string,
session_id string,
referer string,
ip string,
end_user_id string,
city_id string
) row format delimited fields terminated by '\t'
stored as orc ;
---------------------------------------------------------------------------------------------------------
insert into views_orc select * from views;
对比原始大小:
[hadoop@hadoop000 data]$ hadoop fs -du -s -h /user/hive/warehouse/g6_hadoop.db/views
18.1 M 18.1 M /user/hive/warehouse/g6_hadoop.db/views
[hadoop@hadoop000 data]$ hadoop fs -du -s -h /user/hive/warehouse/g6_hadoop.db/views_orc
2.8 M 2.8 M /user/hive/warehouse/g6_hadoop.db/views_orc
之所以数据大小少了这么多是因为ORC默认采用了 ZLIB 压缩,我们去掉压缩后数据量在7.7M所有,也会比原始大小小很多,节省了很多空间。
4、 性能(查询、压缩存储)与ORC差不多,生产上可以随便选择,不过大数据还是会选择ORC,因为ORC的压缩比PARQUET好一点
三、从查询方面来看这个几个存储格式的优劣
1、原始格式(textfile)
hive (g6_hadoop)> select count(*) from views where session_id='f55598cafba346eb217ff3fbd0de2930';
Query ID = hadoop_20190420005050_84924cd6-5269-4d72-993e-056d36dac0d7
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
set mapreduce.job.reduces=<number>
Starting Job = job_1555685664231_0011, Tracking URL = http://hadoop000:8088/proxy/application_1555685664231_0011/
Kill Command = /home/hadoop/soul/app/hadoop-2.6.0-cdh5.7.0/bin/hadoop job -kill job_1555685664231_0011
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2019-04-20 01:27:19,121 Stage-1 map = 0%, reduce = 0%
2019-04-20 01:27:26,441 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 2.02 sec
2019-04-20 01:27:33,724 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 3.28 sec
MapReduce Total cumulative CPU time: 3 seconds 280 msec
Ended Job = job_1555685664231_0011
MapReduce Jobs Launched:
Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 3.28 sec HDFS Read: 19022693 HDFS Write: 3 SUCCESS
Total MapReduce CPU Time Spent: 3 seconds 280 msec
OK
_c0
10
Time taken: 22.757 seconds, Fetched: 1 row(s)
HDFS Read: 19022693 所有数据都load进来了
Time taken: 22.757 seconds
2、SEQUENCEFILE
hive (g6_hadoop)> select count(*) from views_seq where session_id='f55598cafba346eb217ff3fbd0de2930';
Query ID = hadoop_20190420005050_84924cd6-5269-4d72-993e-056d36dac0d7
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
set mapreduce.job.reduces=<number>
Starting Job = job_1555685664231_0012, Tracking URL = http://hadoop000:8088/proxy/application_1555685664231_0012/
Kill Command = /home/hadoop/soul/app/hadoop-2.6.0-cdh5.7.0/bin/hadoop job -kill job_1555685664231_0012
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2019-04-20 01:29:21,115 Stage-1 map = 0%, reduce = 0%
2019-04-20 01:29:28,432 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 2.62 sec
2019-04-20 01:29:34,714 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 3.77 sec
MapReduce Total cumulative CPU time: 3 seconds 770 msec
Ended Job = job_1555685664231_0012
MapReduce Jobs Launched:
Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 3.77 sec HDFS Read: 20509194 HDFS Write: 3 SUCCESS
Total MapReduce CPU Time Spent: 3 seconds 770 msec
OK
_c0
10
Time taken: 21.403 seconds, Fetched: 1 row(s)
HDFS Read: 20509194
Time taken: 21.403
3、RCFILE
hive (g6_hadoop)> select count(*) from views_rc where session_id='f55598cafba346eb217ff3fbd0de2930';
Query ID = hadoop_20190420005050_84924cd6-5269-4d72-993e-056d36dac0d7
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
set mapreduce.job.reduces=<number>
Starting Job = job_1555685664231_0013, Tracking URL = http://hadoop000:8088/proxy/application_1555685664231_0013/
Kill Command = /home/hadoop/soul/app/hadoop-2.6.0-cdh5.7.0/bin/hadoop job -kill job_1555685664231_0013
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2019-04-20 01:30:39,670 Stage-1 map = 0%, reduce = 0%
2019-04-20 01:30:45,944 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 1.62 sec
2019-04-20 01:30:52,201 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 2.78 sec
MapReduce Total cumulative CPU time: 2 seconds 780 msec
Ended Job = job_1555685664231_0013
MapReduce Jobs Launched:
Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 2.78 sec HDFS Read: 3725353 HDFS Write: 3 SUCCESS
Total MapReduce CPU Time Spent: 2 seconds 780 msec
OK
_c0
10
Time taken: 20.54 seconds, Fetched: 1 row(s)
HDFS Read: 3725353
Time taken: 20.54 seconds
4、ORC
hive (g6_hadoop)> select count(*) from views_orc where session_id='f55598cafba346eb217ff3fbd0de2930';
Query ID = hadoop_20190420005050_84924cd6-5269-4d72-993e-056d36dac0d7
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
set mapreduce.job.reduces=<number>
Starting Job = job_1555685664231_0014, Tracking URL = http://hadoop000:8088/proxy/application_1555685664231_0014/
Kill Command = /home/hadoop/soul/app/hadoop-2.6.0-cdh5.7.0/bin/hadoop job -kill job_1555685664231_0014
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2019-04-20 01:32:02,728 Stage-1 map = 0%, reduce = 0%
2019-04-20 01:32:08,961 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 1.42 sec
2019-04-20 01:32:16,253 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 2.66 sec
MapReduce Total cumulative CPU time: 2 seconds 660 msec
Ended Job = job_1555685664231_0014
MapReduce Jobs Launched:
Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 2.66 sec HDFS Read: 1257473 HDFS Write: 3 SUCCESS
Total MapReduce CPU Time Spent: 2 seconds 660 msec
OK
_c0
10
Time taken: 21.202 seconds, Fetched: 1 row(s)
HDFS Read: 1257473
Time taken: 21.202
5、PARQUET
hive (g6_hadoop)> select count(*) from views_parquet where session_id='f55598cafba346eb217ff3fbd0de2930';
Query ID = hadoop_20190420005050_84924cd6-5269-4d72-993e-056d36dac0d7
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
set mapreduce.job.reduces=<number>
Starting Job = job_1555685664231_0015, Tracking URL = http://hadoop000:8088/proxy/application_1555685664231_0015/
Kill Command = /home/hadoop/soul/app/hadoop-2.6.0-cdh5.7.0/bin/hadoop job -kill job_1555685664231_0015
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1
2019-04-20 01:34:27,219 Stage-1 map = 0%, reduce = 0%
2019-04-20 01:34:33,531 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 2.06 sec
2019-04-20 01:34:40,785 Stage-1 map = 100%, reduce = 100%, Cumulative CPU 3.3 sec
MapReduce Total cumulative CPU time: 3 seconds 300 msec
Ended Job = job_1555685664231_0015
MapReduce Jobs Launched:
Stage-Stage-1: Map: 1 Reduce: 1 Cumulative CPU: 3.3 sec HDFS Read: 2687019 HDFS Write: 3 SUCCESS
Total MapReduce CPU Time Spent: 3 seconds 300 msec
OK
_c0
10
Time taken: 21.342 seconds, Fetched: 1 row(s
HDFS Read: 2687019
Time taken: 21.342
虽说数据量很小,测试不是也别准,但是总和各种还是会发现生产上ORC更加合适
网友评论