前言
Immugent在hdWGCNA系列推文第一篇:hdWGCNA:将单细胞和空间转录组的WGCNA分析变成现实中,介绍了hdWGCNA包的主要功能框架,并在上一期推文:hdWGCNA系列推文(一):分析流程的搭建中给大家说明了如何安装hdWGCNA。那么从本期推文开始,正式开始讲解如何在实际分析数据的过程中使用hdWGCNA。
在正式开始之前呢,我们先来回忆一下WGCNA分析到底是个啥?其实简单总结一下就是一句话:关联表型和基因。WGCNA通过将基因进行分组(module),把基因模块和表型进行关联,实现了快速锁定核心基因的目的。整体来讲,WGCNA的分析流程是很繁琐的,一个全套的分析可能会涉及8-9个步骤,但是,这里面有很多步骤其实无关紧要,跟分析的主线,也就是“筛选与表型相关的核心基因”是脱离的。
还有一点最主要的是以往的WGCNA分析都是针对bulk测序数据,而hdWGCNA包的开发专门用于单细胞测序数据的使用,而且作者极大的简化了WGCNA分析部分的流程,而添加了很多可视化的流程。废话不多说,下面开始展示。
代码流程
首先就是导入模拟数据,大家也可以用自己的单细胞测序数据。
# single-cell analysis package
library(Seurat)
# plotting and data science packages
library(tidyverse)
library(cowplot)
library(patchwork)
# co-expression network analysis packages:
library(WGCNA)
library(hdWGCNA)
# using the cowplot theme for ggplot
theme_set(theme_cowplot())
# set random seed for reproducibility
set.seed(12345)
# optionally enable multithreading
enableWGCNAThreads(nThreads = 8)
# load the Zhou et al snRNA-seq dataset
seurat_obj <- readRDS('Zhou_2020.rds')
p <- DimPlot(seurat_obj, group.by='cell_type', label=TRUE) + umap_theme() + ggtitle('Zhou et al Control Cortex') + NoLegend()
p
image.png
Set up Seurat object for WGCNA
seurat_obj <- SetupForWGCNA(
seurat_obj,
gene_select = "fraction", # the gene selection approach
fraction = 0.05, # fraction of cells that a gene needs to be expressed in order to be included
wgcna_name = "tutorial" # the name of the hdWGCNA experiment
)
# construct metacells in each group
seurat_obj <- MetacellsByGroups(
seurat_obj = seurat_obj,
group.by = c("cell_type", "Sample"), # specify the columns in seurat_obj@meta.data to group by
reduction = 'harmony', # select the dimensionality reduction to perform KNN on
k = 25, # nearest-neighbors parameter
max_shared = 10, # maximum number of shared cells between two metacells
ident.group = 'cell_type' # set the Idents of the metacell seurat object
)
# normalize metacell expression matrix:
seurat_obj <- NormalizeMetacells(seurat_obj)
Co-expression network analysis
seurat_obj <- SetDatExpr(
seurat_obj,
group_name = "INH", # the name of the group of interest in the group.by column
group.by='cell_type', # the metadata column containing the cell type info. This same column should have also been used in MetacellsByGroups
assay = 'RNA', # using RNA assay
slot = 'data' # using normalized data
)
# Test different soft powers:
seurat_obj <- TestSoftPowers(
seurat_obj,
networkType = 'signed' # you can also use "unsigned" or "signed hybrid"
)
# plot the results:
plot_list <- PlotSoftPowers(seurat_obj)
# assemble with patchwork
wrap_plots(plot_list, ncol=2)
image.png
Construct co-expression network
power_table <- GetPowerTable(seurat_obj)
head(power_table)
# construct co-expression network:
seurat_obj <- ConstructNetwork(
seurat_obj, soft_power=9,
setDatExpr=FALSE,
tom_name = 'INH' # name of the topoligical overlap matrix written to disk
)
PlotDendrogram(seurat_obj, main='INH hdWGCNA Dendrogram')
image.png
Module Eigengenes and Connectivity
# need to run ScaleData first or else harmony throws an error:
seurat_obj <- ScaleData(seurat_obj, features=VariableFeatures(seurat_obj))
# compute all MEs in the full single-cell dataset
seurat_obj <- ModuleEigengenes(
seurat_obj,
group.by.vars="Sample"
)
# harmonized module eigengenes:
hMEs <- GetMEs(seurat_obj)
# module eigengenes:
MEs <- GetMEs(seurat_obj, harmonized=FALSE)
# compute eigengene-based connectivity (kME):
seurat_obj <- ModuleConnectivity(
seurat_obj,
group.by = 'cell_type', group_name = 'INH'
)
# rename the modules
seurat_obj <- ResetModuleNames(
seurat_obj,
new_name = "INH-M"
)
# plot genes ranked by kME for each module
p <- PlotKMEs(seurat_obj, ncol=5)
p
image.png
# get the module assignment table:
modules <- GetModules(seurat_obj)
# show the first 6 columns:
head(modules[,1:6])
# get hub genes
hub_df <- GetHubGenes(seurat_obj, n_hubs = 10)
head(hub_df)
# compute gene scoring for the top 25 hub genes by kME for each module
# with Seurat method
seurat_obj <- ModuleExprScore(
seurat_obj,
n_genes = 25,
method='Seurat'
)
# compute gene scoring for the top 25 hub genes by kME for each module
# with UCell method
library(UCell)
seurat_obj <- ModuleExprScore(
seurat_obj,
n_genes = 25,
method='UCell'
)
Basic Visualization
# make a featureplot of hMEs for each module
plot_list <- ModuleFeaturePlot(
seurat_obj,
features='hMEs', # plot the hMEs
order=TRUE # order so the points with highest hMEs are on top
)
# stitch together with patchwork
wrap_plots(plot_list, ncol=6)
image.png
Module Correlations
# plot module correlagram
ModuleCorrelogram(seurat_obj)
image.png
# get hMEs from seurat object
MEs <- GetMEs(seurat_obj, harmonized=TRUE)
mods <- colnames(MEs); mods <- mods[mods != 'grey']
# add hMEs to Seurat meta-data:
seurat_obj@meta.data <- cbind(seurat_obj@meta.data, MEs)
# plot with Seurat's DotPlot function
p <- DotPlot(seurat_obj, features=mods, group.by = 'cell_type')
# flip the x/y axes, rotate the axis labels, and change color scheme:
p <- p +
coord_flip() +
RotatedAxis() +
scale_color_gradient2(high='red', mid='grey95', low='blue')
# plot output
p
image.png
# Plot INH-M4 hME using Seurat VlnPlot function
p <- VlnPlot(
seurat_obj,
features = 'INH-M12',
group.by = 'cell_type',
pt.size = 0 # don't show actual data points
)
# add box-and-whisker plots on top:
p <- p + geom_boxplot(width=.25, fill='white')
# change axis labels and remove legend:
p <- p + xlab('') + ylab('hME') + NoLegend()
# plot output
p
image.png
说在最后
整体来说,hdWGCNA分析的这个过程并不复杂,就是把已经构建好的Seurat对象中每群细胞的特征模块提取出来。从上面的结果可以看出,hdWGCNA对一些细胞群的特征提取还是很特异的,但是其中对某几群细胞的特征提取并没有成功。导致这种结果的原因有很多,比如这群细胞数量多少的问题,以及测序质量的问题,亦或者其中有几群细胞本身就很相似。但是我们也不能太挑剔,所有的优质算法都是一步步不断完善的,希望hdWGCNA能出下一个版本,并且能更好的解决这些短板。
好啦,本期分享到这里就结束了,我们下期再会~~
网友评论