美文网首页
Metaplot绘制

Metaplot绘制

作者: 余绕 | 来源:发表于2022-03-24 16:29 被阅读0次
    1. Make the Binned Bed file.

    The bed file should be done with as follows:
    a. Divide the gene into equal 100 bins,
    b. Select 300 bps up or down stream of the gene coordinates and divide them into equal 10 bins.
    The first part can be done with perl or bedtools.

    Attention: The genes on the - strand should be reversed when calculate the average reads of all genes for metaplot.
    perl  Gene_bins.pl  Gene_ff3   > Gene_bin
    

    the Input Gene_ff3 file:

    Chr1    2903    10817   LOC_Os01g01010  +
    Chr1    11218   12435   LOC_Os01g01019  +
    Chr1    12648   15915   LOC_Os01g01030  +
    Chr1    16292   20323   LOC_Os01g01040  +
    Chr1    22841   26971   LOC_Os01g01050  +
    Chr1    27136   28651   LOC_Os01g01060  +
    Chr1    29818   34493   LOC_Os01g01070  +
    Chr1    35581   41180   LOC_Os01g01080  +
    Chr1    44595   47526   LOC_Os01g01090  +
    Chr1    47856   53412   LOC_Os01g01100  -
    

    The generated Gene_bin file:

    Chr1    2603    2633    LOC_Os01g01010  +   1
    Chr1    2633    2663    LOC_Os01g01010  +   2
    Chr1    2663    2693    LOC_Os01g01010  +   3
    Chr1    2693    2723    LOC_Os01g01010  +   4
    Chr1    2723    2753    LOC_Os01g01010  +   5
    Chr1    2753    2783    LOC_Os01g01010  +   6
    Chr1    2783    2813    LOC_Os01g01010  +   7
    Chr1    2813    2843    LOC_Os01g01010  +   8
    Chr1    2843    2873    LOC_Os01g01010  +   9
    Chr1    2873    2903    LOC_Os01g01010  +   10
    
    
    2. Call reads for each bin by bedtools
    ./bedtools multicov -bams  WT_1_rmp.bam  -bed Gene_bin   >Gene_bin_read_counts
    
    #bedtools should be the latest version.
    less -S  less -S Gene_read_final.txt
    Chr1    2603    2633    LOC_Os01g01010  +       1       30
    Chr1    2633    2663    LOC_Os01g01010  +       2       29
    Chr1    2663    2693    LOC_Os01g01010  +       3       29
    Chr1    2693    2723    LOC_Os01g01010  +       4       29
    Chr1    2723    2753    LOC_Os01g01010  +       5       26
    Chr1    2753    2783    LOC_Os01g01010  +       6       29
    Chr1    2783    2813    LOC_Os01g01010  +       7       39
    Chr1    2813    2843    LOC_Os01g01010  +       8       46
    Chr1    2843    2873    LOC_Os01g01010  +       9       42
    Chr1    2873    2903    LOC_Os01g01010  +       10      42
    Chr1    2903    2982    LOC_Os01g01010  +       1       59
    Chr1    2982    3061    LOC_Os01g01010  +       2       50
    Chr1    3061    3140    LOC_Os01g01010  +       3       55
    Chr1    3140    3219    LOC_Os01g01010  +       4       62
    Chr1    3219    3298    LOC_Os01g01010  +       5       67
    Chr1    3298    3377    LOC_Os01g01010  +       6       69
    Chr1    3377    3456    LOC_Os01g01010  +       7       61
    Chr1    3456    3535    LOC_Os01g01010  +       8       66
    Chr1    3535    3614    LOC_Os01g01010  +       9       69
    Chr1    3614    3693    LOC_Os01g01010  +       10      64
    Chr1    3693    3772    LOC_Os01g01010  +       11      51
    
    3. Transform the data from a long data into a short data.
    perl  READS_reformat.pl   Gene_bin_read_counts  > Gene_read_final.txt
    
    less -S Gene_read_final.txt
    LOC_Os06g23090  8       9       8       7       6       5       7       7       7       6       6       8       9       9       10      8       7
    LOC_Os01g39830  23      24      24      22      22      23      23      23      26      29      32      17      22      15      20      22      24
    LOC_Os02g21850  2       3       3       2       2       2       4       3       3       4       4       4       4       5       5       5       5
    LOC_Os04g24190  14      11      10      9       10      12      15      11      10      13      15      12      12      9       9       7       8
    LOC_Os06g12180  4       4       5       5       7       7       9       9       6       6       5       5       6       8       7       7       7
    LOC_Os10g19150  7       9       8       7       3       1       0       2       2       2       0       0       0       0       0       0       0
    LOC_Os01g73720  2       3       5       6       6       7       10      8       6       8       8       9       9       9       8       8       8
    LOC_Os08g15288  141     144     121     111     83      59      58      75      84      106     110     115     121     131     130     124     124
    LOC_Os01g13810  11      10      9       7       5       4       3       3       2       0       0       2       2       4       4       7       8
    LOC_Os04g10214  12      11      11      10      11      14      15      17      17      22      21      26      28      28      28      28      29
    
    4. Calculate the average bin reads of all genes, then make the metaplot . This can be done in Excel.
    image.png

    Note that: The reads can be normalized with the scaling factor which was value of the total mapped reads/1 million.

    相关文章

      网友评论

          本文标题:Metaplot绘制

          本文链接:https://www.haomeiwen.com/subject/gcxljrtx.html