递归

作者: 蹩脚的小三 | 来源:发表于2019-12-01 22:00 被阅读0次

一、什么是递归?

  1. 递归是一种非常高效、简洁的编码技巧,一种应用非常广泛的算法,比如DFS深度优先搜索、前中后序二叉树遍历等都是使用递归。
  2. 方法或函数调用自身的方式称为递归调用,调用称为递,返回称为归。
  3. 基本上,所有的递归问题都可以用递推公式来表示,比如:
f(n) = f(n-1) + 1;
f(n) = f(n-1) + f(n-2);
f(n)=n*f(n-1);

f(n) 表示你想知道自己在哪一排,f(n-1) 表示前面一排所在的排数,f(1)=1 表示第一排的人知道自己在第一排。有了这个递推公式,我们就可以很轻松地将它改为递归代码:

int f(int n) {
  if (n == 1) return 1;
  return f(n-1) + 1;
}

二、为什么使用递归?递归的优缺点?

  1. 优点:代码的表达力很强,写起来简洁。
  2. 缺点:空间复杂度高、有堆栈溢出风险、存在重复计算、过多的函数调用会耗时较多等问题。

三、什么样的问题可以用递归解决呢?

一个问题只要同时满足以下3个条件,就可以用递归来解决:

  1. 问题的解可以分解为几个子问题的解。何为子问题?就是数据规模更小的问题
  2. 问题与子问题,除了数据规模不同,求解思路完全一样
  3. 存在递归终止条件

四、如何实现递归?

  1. 递归代码编写
    写递归代码的关键就是找到如何将大问题分解为小问题的规律,并且基于此写出递推公式,然后再推敲终止条件,最后将递推公式和终止条件翻译成代码。

  2. 递归代码理解
    对于递归代码,若试图想清楚整个递和归的过程,实际上是进入了一个思维误区。

写出递推公式,找到终止条件
那该如何理解递归代码呢?如果一个问题A可以分解为若干个子问题B、C、D,你可以假设子问题B、C、D已经解决。而且,你只需要思考问题A与子问题B、C、D两层之间的关系即可,不需要一层层往下思考子问题与子子问题,子子问题与子子子问题之间的关系。屏蔽掉递归细节,这样子理解起来就简单多了。
因此,理解递归代码,就把它抽象成一个递推公式,不用想一层层的调用关系,不要试图用人脑去分解递归的每个步骤。
比如走台阶问题:
假如这里有 n 个台阶,每次你可以跨 1 个台阶或者 2 个台阶,请问走这 n 个台阶有多少种走法?如果有 7 个台阶,你可以 2,2,2,1 这样子上去,也可以 1,2,1,1,2 这样子上去,总之走法有很多,那如何用编程求得总共有多少种走法呢?
我们仔细想下,实际上,可以根据第一步的走法把所有走法分为两类,第一类是第一步走了 1 个台阶,另一类是第一步走了 2 个台阶。所以 n 个台阶的走法就等于先走 1 阶后,n-1 个台阶的走法 加上先走 2 阶后,n-2 个台阶的走法。用公式表示就是:

f(n) = f(n-1)+f(n-2)

有了递推公式,递归代码基本上就完成了一半。我们再来看下终止条件。当有一个台阶时,我们不需要再继续递归,就只有一种走法。所以 f(1)=1。这个递归终止条件足够吗?我们可以用 n=2,n=3 这样比较小的数试验一下。

n=2 时,f(2)=f(1)+f(0)。如果递归终止条件只有一个 f(1)=1,那 f(2) 就无法求解了。所以除了 f(1)=1 这一个递归终止条件外,还要有 f(0)=1,表示走 0 个台阶有一种走法,不过这样子看起来就不符合正常的逻辑思维了。所以,我们可以把 f(2)=2 作为一种终止条件,表示走 2 个台阶,有两种走法,一步走完或者分两步来走。

所以,递归终止条件就是 f(1)=1,f(2)=2。这个时候,你可以再拿 n=3,n=4 来验证一下,这个终止条件是否足够并且正确。我们把递归终止条件和刚刚得到的递推公式放到一起就是这样的:

f(1) = 1;
f(2) = 2;
f(n) = f(n-1)+f(n-2)

最终代码实现:

int f(int n) {
  if (n == 1) return 1;
  if (n == 2) return 2;
  return f(n-1) + f(n-2);
}

写递归代码的关键就是找到如何将大问题分解为小问题的规律,并且基于此写出递推公式,然后再推敲终止条件,最后将递推公式和终止条件翻译成代码

五、递归常见问题及解决方案

函数调用会使用栈来保存临时变量。每调用一个函数,都会将临时变量封装为栈帧压入内存栈,等函数执行完成返回时,才出栈。系统栈或者虚拟机栈空间一般都不大。如果递归求解的数据规模很大,调用层次很深,一直压入栈,就会有堆栈溢出的风险

  1. 警惕堆栈溢出:可以声明一个全局变量来控制递归的深度,从而避免堆栈溢出。
// 全局变量,表示递归的深度。
int depth = 0;

int f(int n) {
  ++depth;
  if (depth > 1000) throw exception;
  
  if (n == 1) return 1;
  return f(n-1) + 1;
}
  1. 警惕重复计算:通过某种数据结构来保存已经求解过的值,从而避免重复计算。


    image.png

    从图中,我们可以直观地看到,想要计算 f(5),需要先计算 f(4) 和 f(3),而计算 f(4) 还需要计算 f(3),因此,f(3) 就被计算了很多次,这就是重复计算问题。为了避免重复计算,我们可以通过一个数据结构(比如散列表)来保存已经求解过的 f(k)。当递归调用到 f(k) 时,先看下是否已经求解过了。如果是,则直接从散列表中取值返回,不需要重复计算,这样就能避免刚讲的问题了。

public int f(int n) {
  if (n == 1) return 1;
  if (n == 2) return 2;
  
  // hasSolvedList可以理解成一个Map,key是n,value是f(n)
  if (hasSolvedList.containsKey(n)) {
    return hasSolvedList.get(n);
  }
  
  int ret = f(n-1) + f(n-2);
  hasSolvedList.put(n, ret);
  return ret;
}

六、如何将递归改写为非递归代码?

笼统的讲,所有的递归代码都可以改写为迭代循环的非递归写法。如何做?抽象出递推公式、初始值和边界条件,然后用迭代循环实现。

相关文章

  • 二叉树遍历

    先序遍历——[递归、非递归] 中序遍历——[递归、非递归] 后序遍历——[递归、非递归] 层次遍历——[递归、非递归]

  • 二叉树的遍历

    先序递归: 非递归: 中序递归: 非递归: 后序递归: 非递归 层次遍历

  • 二叉树的前序、中序、后序遍历(递归、非递归)

    二叉树 前序 递归: 非递归: 中序 递归: 非递归: 层序 递归: 非递归:

  • 树的遍历,golang实现

    先序,递归 中序,递归 后序,递归 先序,非递归 中序,非递归 后序,非递归 层序遍历

  • 3 递归(19)(方法层面的高级循环)

    递归 树的递归 其它递归

  • 递归,递归,递归

    在我告诉你什么是递归之前,你应该读一下这篇文章:递归,递归,递归。 如果你没有这么做,那么表扬一下自己。如果你那么...

  • 数据结构-树的遍历

    1. 先序遍历 递归实现 非递归实现 2. 中序遍历 递归实现 非递归实现 3. 后序遍历 递归实现 非递归实现 ...

  • 树的遍历

    节点结构: 先序遍历 递归 非递归 后序遍历 递归 非递归 中序遍历 递归 非递归 层序遍历 类库 有了上述遍历算...

  • 算法图解系列之递归[03]

    3 递归 3.1 递归<函数> 3.2 基线条件和递归条件 3.3 递归调用栈

  • 三十八、递归

    一、递归的概述 递归,指在当前方法内调用自己的这种现象。 递归分为两种,直接递归和间接递归。 直接递归称为方法自身...

网友评论

      本文标题:递归

      本文链接:https://www.haomeiwen.com/subject/genowctx.html