官网Numpy教程

作者: winddy_akoky | 来源:发表于2018-08-09 19:02 被阅读269次

    一: 简单介绍

    numpy 的主要对象是同类型的多维数组。它通常是以表格的形式存在,表格里面的元素具有相同的类型,可以通过含正整数的元组索引到相应的元素。在NumPy中,维度被叫做轴

    例如,一个3维的点的坐标为:[1,2,3], 它就有一个轴。 这个轴里有三个元素存在,即它的长度为3.

    下面是一个轴而2的数组,其中第一个轴的长度为2, 第二个轴的长度为3

    [[1,2,3],
    [3,4,5]]
    
    

    Numpy的数组类被叫做 ndarray, 当然,它还有另一个别名 array 。注意:numpy.array 不同于 python 标准库里的 array.array. 后者只能处理一维的数组且提供的函数比较少。

    下面介绍 ndarray 几个重要的函数

    1. ndarray.ndim

      返回数组中轴的数量

    2. ndarray.shape

      返回数组的维度。它以正整数的元组形式返回每一个轴的长度。比如对于一个n行m列的矩阵, shape 就为 (n,m).

    3. ndarray.size

      返回数组所有元素的数目。它是shape元素的乘积。

    4. ndarray.dtype

      返回数组中元素的数据类型

    5. ndarray.itemsize

      返回数组中元素的字节数。比如,数组元素的数据类型是 float64, 那么返回的itemsize 为 8(64/8). 因为float64的数组中,每一个元素占64个bit, 转化为字节数: 8 = 64 / 8

    6. ndarray.data

      返回数组的真实物理地址。这个一般不用。如果要返回元素,用索引会更加方便。

    练习

    Selection_024.png

    二:数组的创建

    1. 可以用python的list或tupe来创建数组。数组的元素类型会根据数组的元素来推断
    Selection_025.png
    1. 注意:下面是容易犯错点
    >>> a = np.array(1,2,3,4)    # WRONG
    >>> a = np.array([1,2,3,4])  # RIGHT
    
    1. 创建多维数组
    >>> b = np.array([(1.5,2,3), (4,5,6)])
    >>> b
    array([[ 1.5,  2. ,  3. ],
           [ 4. ,  5. ,  6. ]])
    
    1. 创建数组的同时可以指定元素类型

    如指定数组元素为复数:

    >>> c = np.array( [ [1,2], [3,4] ], dtype=complex )
    >>> c
    array([[ 1.+0.j,  2.+0.j],
           [ 3.+0.j,  4.+0.j]])
    
    1. 有时我们并不知道数组元素的值多少,但是直到数组的shape,这时我们可以用 zeros函数 / ones函数 / empty 函数 来创建数组
    >>> np.zeros( (3,4) )
    >>> np.empty( (2,3) )                                 # uninitialized, output may vary
    array([[  3.73603959e-262,   6.02658058e-154,   6.55490914e-260],
           [  5.30498948e-313,   3.14673309e-307,   1.00000000e+000]])
    
    1. 创建数列( arrage函数的第一参数表示数列的起始值,第二个参数是数列的上界,取不到,第三参数表示数列之间的距离)
    >>> np.arange( 10, 30, 5 )
    array([10, 15, 20, 25])
    >>> np.arange( 0, 2, 0.3 )                 # it accepts float arguments
    array([ 0. ,  0.3,  0.6,  0.9,  1.2,  1.5,  1.8])
    
    
    1. 用 linespace函数创建数组

    前两个参数表示数列的上下界,上下界都取得到。 第三个参数表示要生成多少个元素。

    >>> from numpy import pi
    >>> np.linspace( 0, 2, 9 )                 # 9 numbers from 0 to 2
    array([ 0.  ,  0.25,  0.5 ,  0.75,  1.  ,  1.25,  1.5 ,  1.75,  2.  ])
    >>> x = np.linspace( 0, 2*pi, 100 )        # useful to evaluate function at lots of points
    >>> f = np.sin(x)
    
    ```>>> np.empty( (2,3) )                                 # uninitialized, output may vary
    array([[  3.73603959e-262,   6.02658058e-154,   6.55490914e-260],
           [  5.30498948e-313,   3.14673309e-307,   1.00000000e+000]])
    
    1. 创建数列( arrage函数的第一参数表示数列的起始值,第二个参数是数列的上界,取不到,第三参数表示数列之间的距离)
    >>> np.arange( 10, 30, 5 )
    array([10, 15, 20, 25])
    >>> np.arange( 0, 2, 0.3 )                 # it accepts float arguments
    array([ 0. ,  0.3,  0.6,  0.9,  1.2,  1.5,  1.8])
    
    
    1. 用 linespace函数创建数组

    前两个参数表示数列的上下界,上下界都取得到。 第三个参数表示要生成多少个元素。

    >>> from numpy import pi
    >>> np.linspace( 0, 2, 9 )                 # 9 numbers from 0 to 2
    array([ 0.  ,  0.25,  0.5 ,  0.75,  1.  ,  1.25,  1.5 ,  1.75,  2.  ])
    >>> x = np.linspace( 0, 2*pi, 100 )        # useful to evaluate function at lots of points
    >>> f = np.sin(x)
    
    

    三: 基础操作

    1. 元素按位 加 减 乘 除
    >>> a = np.array( [20,30,40,50] )
    >>> b = np.arange( 4 )
    >>> b
    array([0, 1, 2, 3])
    >>> c = a-b
    >>> c
    array([20, 29, 38, 47])
    >>> b**2
    array([0, 1, 4, 9])
    >>> 10*np.sin(a)
    array([ 9.12945251, -9.88031624,  7.4511316 , -2.62374854])
    >>> a<35
    array([ True, True, False, False])
    

    注意:指数操作符是: **

    1. 矩阵乘法

    用 dot 函数 或 @ 操作符(python>3.5)

    >>> A = np.array( [[1,1],
    ...             [0,1]] )
    >>> B = np.array( [[2,0],
    ...             [3,4]] )
    >>> A * B                       # elementwise product
    array([[2, 0],
           [0, 4]])
    >>> A @ B                       # matrix product
    array([[5, 4],
           [3, 4]])
    >>> A.dot(B)                    # another matrix product
    array([[5, 4],
           [3, 4]])
    
    1. 当操作有多种数据类型的数组时,数组元素的数据类型为精度最大的类型
    >>> a = np.ones(3, dtype=np.int32)
    >>> b = np.linspace(0,pi,3)
    >>> b.dtype.name
    'float64'
    >>> c = a+b
    >>> c
    array([ 1.        ,  2.57079633,  4.14159265])
    >>> c.dtype.name
    'float64'
    >>> d = np.exp(c*1j)
    >>> d
    array([ 0.54030231+0.84147098j, -0.84147098+0.54030231j,
           -0.54030231-0.84147098j])
    >>> d.dtype.name
    'complex128'
    
    1. sum / min / max 函数
    >>> b = np.arange(12).reshape(3,4)
    >>> b
    array([[ 0,  1,  2,  3],
           [ 4,  5,  6,  7],
           [ 8,  9, 10, 11]])
    >>>
    >>> b.sum(axis=0)                            # sum of each column
    array([12, 15, 18, 21])
    >>>
    >>> b.min(axis=1)                            # min of each row
    array([0, 4, 8])
    >>>
    >>> b.cumsum(axis=1)                         # cumulative sum along each row
    array([[ 0,  1,  3,  6],
           [ 4,  9, 15, 22],
           [ 8, 17, 27, 38]])
    

    四:常用函数

    注意这些函数都是按位操作的

    1. exp() / sqrt() / add()
    >>> B = np.arange(3)
    >>> B
    array([0, 1, 2])
    >>> np.exp(B)
    array([ 1.        ,  2.71828183,  7.3890561 ])
    >>> np.sqrt(B)
    array([ 0.        ,  1.        ,  1.41421356])
    >>> C = np.array([2., -1., 4.])
    >>> np.add(B, C)
    array([ 2.,  0.,  6.])
    
    1. numpy.all(a, axis=None, out=None, keepdims=<no value>)

    沿着轴测试数组中所有元素是否为True。 如果存在一个为False,就返回False

    注意: NaN / 正无穷 / 负无穷都是True,因为它们都不等于0

    >>> np.all([[True,False],[True,True]])
    False
    
    >>> np.all([[True,False],[True,True]], axis=0)
    array([ True, False])
    
    >>> np.all([-1, 4, 5])
    True
    
    >>> np.all([1.0, np.nan])
    True
    
    >>> o=np.array([False])
    >>> z=np.all([-1, 4, 5], out=o)
    >>> id(z), id(o), z                             
    (28293632, 28293632, array([ True]))
    
    1. numpy.any(a, axis=None, out=None, keepdims=<no value>)

    跟all函数类似,不过它是如果有一个元素为True,则返回True

    >>> np.any([[True, False], [True, True]])
    True
    >>>
    >>> np.any([[True, False], [False, False]], axis=0)
    array([ True, False])
    >>>
    >>> np.any([-1, 0, 5])
    True
    >>>
    >>> np.any(np.nan)
    True
    >>>
    >>> o=np.array([False])
    >>> z=np.any([-1, 4, 5], out=o)
    >>> z, o
    (array([ True]), array([ True]))
    >>> # Check now that z is a reference to o
    >>> z is o
    True
    >>> id(z), id(o) # identity of z and o              
    (191614240, 191614240)
    
    1. numpy.apply_along_axis(func1d, axis, arr, *args, **kwargs)

    沿着给定的轴作用函数func1d
    返回处理过后的数组

    >>> def my_func(a):
    ...     """Average first and last element of a 1-D array"""
    ...     return (a[0] + a[-1]) * 0.5
    >>> b = np.array([[1,2,3], [4,5,6], [7,8,9]])
    >>> np.apply_along_axis(my_func, 0, b)
    array([ 4.,  5.,  6.])
    >>> np.apply_along_axis(my_func, 1, b)
    array([ 2.,  5.,  8.])
    
    >>> b = np.array([[8,1,7], [4,3,9], [5,2,6]])
    >>> np.apply_along_axis(sorted, 1, b)
    array([[1, 7, 8],
           [3, 4, 9],
           [2, 5, 6]])
    
    >>> b = np.array([[1,2,3], [4,5,6], [7,8,9]])
    >>> np.apply_along_axis(np.diag, -1, b)
    array([[[1, 0, 0],
            [0, 2, 0],
            [0, 0, 3]],
           [[4, 0, 0],
            [0, 5, 0],
            [0, 0, 6]],
           [[7, 0, 0],
            [0, 8, 0],
            [0, 0, 9]]])
    
    1. numpy.argmax(a, axis=None, out=None)

    返回沿着轴最大值的索引

    >>> a = np.arange(6).reshape(2,3)
    >>> a
    array([[0, 1, 2],
           [3, 4, 5]])
    >>> np.argmax(a)
    5
    >>> np.argmax(a, axis=0)
    array([1, 1, 1])
    >>> np.argmax(a, axis=1)
    array([2, 2])
    
    >>> ind = np.unravel_index(np.argmax(a, axis=None), a.shape)
    >>> ind
    (1, 2)
    >>> a[ind]
    5
    
    >>> b = np.arange(6)
    >>> b[1] = 5
    >>> b
    array([0, 5, 2, 3, 4, 5])
    >>> np.argmax(b)  # Only the first occurrence is returned.
    1
    
    1. numpy.argmin

    跟numpy.argmax函数类似

    1. numpy.argmax(a, axis=-1, kind='quicksort', order=None)

    返回沿着轴排序后的元素在原来数组的索引位置

    >>> x = np.array([3, 1, 2])
    >>> np.argsort(x)
    array([1, 2, 0])
    
    >>> np.argsort(x, axis=0)  # sorts along first axis (down)
    array([[0, 1],
           [1, 0]])
    
    >>> ind = np.unravel_index(np.argsort(x, axis=None), x.shape)
    >>> ind
    (array([0, 1, 1, 0]), array([0, 0, 1, 1]))
    >>> x[ind]  # same as np.sort(x, axis=None)
    array([0, 2, 2, 3])
    
    # 带关键词的排序
    >>> x = np.array([(1, 0), (0, 1)], dtype=[('x', '<i4'), ('y', '<i4')])
    >>> x
    array([(1, 0), (0, 1)],
          dtype=[('x', '<i4'), ('y', '<i4')])
    >>> np.argsort(x, order=('x','y'))
    array([1, 0])
    >>> np.argsort(x, order=('y','x'))
    array([0, 1])
    
    1. 沿着指定的轴计算平均值
    >>> data = range(1,5)
    >>> data
    [1, 2, 3, 4]
    >>> np.average(data)
    2.5
    >>> np.average(range(1,11), weights=range(10,0,-1))
    4.0
    
    >>> data = np.arange(6).reshape((3,2))
    >>> data
    array([[0, 1],
           [2, 3],
           [4, 5]])
    >>> np.average(data, axis=1, weights=[1./4, 3./4])
    array([ 0.75,  2.75,  4.75])
    >>> np.average(data, weights=[1./4, 3./4])
    Traceback (most recent call last):
    ...
    TypeError: Axis must be specified when shapes of a and weights differ
    
    
    1. numpy.bincount(x, weights=None, minlength=0)

    遍历数组x, 创建新的数组y(长度是x中的最大值), 对于x中的每一个元素,执行y[x[i]] += 1 或 y[x[i]] += widht[i]

    返回y

    >>> np.bincount(np.arange(5))
    array([1, 1, 1, 1, 1])
    >>> np.bincount(np.array([0, 1, 1, 3, 2, 1, 7]))
    array([1, 3, 1, 1, 0, 0, 0, 1])
    
    >>> x = np.array([0, 1, 1, 3, 2, 1, 7, 23])
    >>> np.bincount(x).size == np.amax(x)+1
    True
    
    # 输入的数组必须是整形的
    >>> np.bincount(np.arange(5, dtype=float))
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    TypeError: array cannot be safely cast to required type
    
    >>> w = np.array([0.3, 0.5, 0.2, 0.7, 1., -0.6]) # weights
    >>> x = np.array([0, 1, 1, 2, 2, 2])
    >>> np.bincount(x,  weights=w)
    array([ 0.3,  0.7,  1.1])
    
    1. numpy.ceil

    向上取整

    >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
    >>> np.ceil(a)
    array([-1., -1., -0.,  1.,  2.,  2.,  2.])
    
    1. numpy.clip(a, a_min, a_max, out=None)

    把数组限制在指定的区间内

    >>> a = np.arange(10)
    >>> np.clip(a, 1, 8)
    array([1, 1, 2, 3, 4, 5, 6, 7, 8, 8])
    >>> a
    array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
    >>> np.clip(a, 3, 6, out=a)
    array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])
    >>> a = np.arange(10)
    >>> a
    array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
    >>> np.clip(a, [3, 4, 1, 1, 1, 4, 4, 4, 4, 4], 8)
    array([3, 4, 2, 3, 4, 5, 6, 7, 8, 8])
    
    1. numpy.conj(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'conjugate'>

    返回共轭复数

    >>> np.conjugate(1+2j)
    (1-2j)
    
    >>> x = np.eye(2) + 1j * np.eye(2)
    >>> np.conjugate(x)
    array([[ 1.-1.j,  0.-0.j],
           [ 0.-0.j,  1.-1.j]])
    
    1. numpy.cumprod(a, axis=None, dtype=None, out=None)

    沿着轴把元素一个个相乘,并记录中间结果

    >>> a = np.array([1,2,3])
    >>> np.cumprod(a) # intermediate results 1, 1*2
    ...               # total product 1*2*3 = 6
    array([1, 2, 6])
    >>> a = np.array([[1, 2, 3], [4, 5, 6]])
    >>> np.cumprod(a, dtype=float) # specify type of output
    array([   1.,    2.,    6.,   24.,  120.,  720.])
    
    1. numpy.cumsum(a, axis=None, dtype=None, out=None)

    沿着轴把元素一个个相加,并记录中间结果

    >>> a = np.array([[1,2,3], [4,5,6]])
    >>> a
    array([[1, 2, 3],
           [4, 5, 6]])
    >>> np.cumsum(a)
    array([ 1,  3,  6, 10, 15, 21])
    >>> np.cumsum(a, dtype=float)     # specifies type of output value(s)
    array([  1.,   3.,   6.,  10.,  15.,  21.])
    
    1. numpy.diff(a, n=1, axis=-1)

    沿着轴对相邻的元素做差, 规则: out[n] = a[n+1] - a[n]

    >>> x = np.array([1, 2, 4, 7, 0])
    >>> np.diff(x)
    array([ 1,  2,  3, -7])
    >>> np.diff(x, n=2)
    array([  1,   1, -10])
    
    1. numpy.inner(a,b)

    内积

    p.inner(a, b) = sum(a[:]*b[:])
    p.inner(a, b) = np.tensordot(a, b, axes=(-1,-1))

    >>> a = np.array([1,2,3])
    >>> b = np.array([0,1,0])
    >>> np.inner(a, b)
    
    >>> a = np.arange(24).reshape((2,3,4))
    >>> b = np.arange(4)
    >>> np.inner(a, b)
    array([[ 14,  38,  62],
           [ 86, 110, 134]])
    
    >>> np.inner(np.eye(2), 7)
    array([[ 7.,  0.],
           [ 0.,  7.]])
    
    >>> a = np.arange(24).reshape((2,3,4))
    >>> b = np.arange(4)
    >>> np.inner(a, b)
    array([[ 14,  38,  62],
           [ 86, 110, 134]])
    

    五 索引,切片,迭代

    1. 一维数组情况
    >>> a = np.arange(10)**3
    >>> a
    array([  0,   1,   8,  27,  64, 125, 216, 343, 512, 729])
    >>> a[2]
    8
    >>> a[2:5]
    array([ 8, 27, 64])
    >>> a[:6:2] = -1000    # equivalent to a[0:6:2] = -1000; from start to position 6, exclusive, set every 2nd element to -1000
    >>> a
    array([-1000,     1, -1000,    27, -1000,   125,   216,   343,   512,   729])
    >>> a[ : :-1]                                 # reversed a
    array([  729,   512,   343,   216,   125, -1000,    27, -1000,     1, -1000])
    >>> for i in a:
    ...     print(i**(1/3.))
    ...
    nan
    1.0
    nan
    3.0
    nan
    5.0
    6.0
    7.0
    8.0
    9.0
    
    1. 多维情况下
    >>> def f(x,y):
    ...     return 10*x+y
    ...
    >>> b = np.fromfunction(f,(5,4),dtype=int)
    >>> b
    array([[ 0,  1,  2,  3],
           [10, 11, 12, 13],
           [20, 21, 22, 23],
           [30, 31, 32, 33],
           [40, 41, 42, 43]])
    >>> b[2,3]
    23
    >>> b[0:5, 1]                       # each row in the second column of b
    array([ 1, 11, 21, 31, 41])
    >>> b[ : ,1]                        # equivalent to the previous example
    array([ 1, 11, 21, 31, 41])
    >>> b[1:3, : ]                      # each column in the second and third row of b
    array([[10, 11, 12, 13],
           [20, 21, 22, 23]])
    
    1. 访问最后一个元素
    >>> b[-1]                                  # the last row. Equivalent to b[-1,:]
    array([40, 41, 42, 43])
    
    1. 使用 dots(...)

    dots(...)表示许多个:

    比如说 x 是一个5轴的数组,那么:

    • x[1,2,...] is equivalent to x[1,2,:,:,:],
    • x[...,3] to x[:,:,:,:,3] and
    • x[4,...,5,:] to x[4,:,:,5,:]
    >>> c = np.array( [[[  0,  1,  2],               # a 3D array (two stacked 2D arrays)
    ...                 [ 10, 12, 13]],
    ...                [[100,101,102],
    ...                 [110,112,113]]])
    >>> c.shape
    (2, 2, 3)
    >>> c[1,...]                                   # same as c[1,:,:] or c[1]
    array([[100, 101, 102],
           [110, 112, 113]])
    >>> c[...,2]                                   # same as c[:,:,2]
    array([[  2,  13],
           [102, 113]])
    
    1. 迭代

    对于多维数组的迭代,都是对第一个轴开始的:

    >>> for row in b:
    ...     print(row)
    ...
    [0 1 2 3]
    [10 11 12 13]
    [20 21 22 23]
    [30 31 32 33]
    [40 41 42 43]
    

    也可以按元素来访问:

    >>> for element in b.flat:
    ...     print(element)
    ...
    0
    1
    2
    3
    10
    11
    12
    13
    20
    21
    22
    23
    30
    31
    32
    33
    40
    41
    42
    43
    
    

    六: shape 草组

    1. ravel() / reshape() / T
      随机给定一个数组的形状
    >>> a = np.floor(10*np.random.random((3,4)))
    >>> a
    array([[ 2.,  8.,  0.,  6.],
           [ 4.,  5.,  1.,  1.],
           [ 8.,  9.,  3.,  6.]])
    >>> a.shape
    (3, 4)
    

    对数组形状的操作有好多命令,值得注意的是这些命令不改变原来的数组。但是并没有创建新的数组,即没有分配新的内存空间。

    >>> a.ravel()  # returns the array, flattened
    array([ 2.,  8.,  0.,  6.,  4.,  5.,  1.,  1.,  8.,  9.,  3.,  6.])
    >>> a.reshape(6,2)  # returns the array with a modified shape
    array([[ 2.,  8.],
           [ 0.,  6.],
           [ 4.,  5.],
           [ 1.,  1.],
           [ 8.,  9.],
           [ 3.,  6.]])
    >>> a.T  # returns the array, transposed
    array([[ 2.,  4.,  8.],
           [ 8.,  5.,  9.],
           [ 0.,  1.,  3.],
           [ 6.,  1.,  6.]])
    >>> a.T.shape
    (4, 3)
    >>> a.shape
    (3, 4)
    
    1. resize()

    resize() 函数会改变原来数组的形状

    >>> a
    array([[ 2.,  8.,  0.,  6.],
           [ 4.,  5.,  1.,  1.],
           [ 8.,  9.,  3.,  6.]])
    >>> a.resize((2,6))
    >>> a
    array([[ 2.,  8.,  0.,  6.,  4.,  5.],
           [ 1.,  1.,  8.,  9.,  3.,  6.]])
    

    如果一个维度被指定为 -1,那么表示改维度会被自动计算

    >>> a.reshape(3,-1)
    array([[ 2.,  8.,  0.,  6.],
           [ 4.,  5.,  1.,  1.],
           [ 8.,  9.,  3.,  6.]])
    

    七: 不同数组的堆叠

    1. 不同数组可以不同的轴堆叠
    >>> a = np.floor(10*np.random.random((2,2)))
    >>> a
    array([[ 8.,  8.],
           [ 0.,  0.]])
    >>> b = np.floor(10*np.random.random((2,2)))
    >>> b
    array([[ 1.,  8.],
           [ 0.,  4.]])
    >>> np.vstack((a,b))
    array([[ 8.,  8.],
           [ 0.,  0.],
           [ 1.,  8.],
           [ 0.,  4.]])
    >>> np.hstack((a,b))
    array([[ 8.,  8.,  1.,  8.],
           [ 0.,  0.,  0.,  4.]])
    
    1. column_stack
    >>> from numpy import newaxis
    >>> np.column_stack((a,b))     # with 2D arrays
    array([[ 8.,  8.,  1.,  8.],
           [ 0.,  0.,  0.,  4.]])
    >>> a = np.array([4.,2.])
    >>> b = np.array([3.,8.])
    >>> np.column_stack((a,b))     # returns a 2D array
    array([[ 4., 3.],
           [ 2., 8.]])
    >>> np.hstack((a,b))           # the result is different
    array([ 4., 2., 3., 8.])
    >>> a[:,newaxis]               # this allows to have a 2D columns vector
    array([[ 4.],
           [ 2.]])
    >>> np.column_stack((a[:,newaxis],b[:,newaxis]))
    array([[ 4.,  3.],
           [ 2.,  8.]])
    >>> np.hstack((a[:,newaxis],b[:,newaxis]))   # the result is the same
    array([[ 4.,  3.],
           [ 2.,  8.]])
    
    1. r_ 和 c_
    >>> np.r_[1:4,0,4]
    array([1, 2, 3, 0, 4])
    

    相关文章

      网友评论

        本文标题:官网Numpy教程

        本文链接:https://www.haomeiwen.com/subject/gfkqbftx.html