BP神经网络是前馈神经网络的一种,是指用反向传播算法(BP算法)进行训练的多层前馈神经网络,它包括信号的前向传播和误差的反向传播两个过程,即计算误差输出时(预测与真实的误差)按从输入到输出的方向进行,而调整权值w和偏置b,则从输出到输入的方向进行(在输出层不能得到期望的输出或者说与真实差别较大,才转入反向传播进行调整)。通过不断的前向计算误差输出,再反向调整权值w和偏置b,让它预测出新的输出y’,不断迭代重复,最终能得到误差十分小的输出,如误差为0.01、0.001,与真实的值十分接近。
BP神经网络是前馈神经网络的一种,是指用反向传播算法(BP算法)进行训练的多层前馈神经网络,它包括信号的前向传播和误差的反向传播两个过程,即计算误差输出时(预测与真实的误差)按从输入到输出的方向进行,而调整权值w和偏置b,则从输出到输入的方向进行(在输出层不能得到期望的输出或者说与真实差别较大,才转入反向传播进行调整)。通过不断的前向计算误差输出,再反向调整权值w和偏置b,让它预测出新的输出y’,不断迭代重复,最终能得到误差十分小的输出,如误差为0.01、0.001,与真实的值十分接近。
本文标题:姓名:于倩学号:21011210116学院:通信工程学院
本文链接:https://www.haomeiwen.com/subject/ggirvrtx.html
网友评论