冗余信息

作者: wuzhiguo | 来源:发表于2016-12-18 16:40 被阅读8次

摘自 Dr. Bernhard Hofmann-Wellenhof, Dr. Klaus Legat, Dr. Manfred Wieser (auth.)-Navigation_ Principles of Positioning and Guidance-Springer-Verlag Wien (2003)

Types of redundancy

An essential feature of sensor fusion is the presence of redundant information, i.e., more information than required to solve a defined task is availableabout a given process. After Beyer and Wigger (2001: Sect. 2.4.5), four types:

  • Parallel redundancy arises by using several identical sensors or devices.Voting systems directly compare the signals of the sensors to get aunique solution.

  • Complementary redundancy arises iftwo or more sensors with differentphysical operation principles and varying characteristics are used. Thesensors complement each other in the way that the advantage of the onecould be the disadvantage of the other and vice versa. As an example,the combination of inertial navigation and GNSS may be considered.

  • Dissimilar redundancy occurs in case of two or more nonidentical sensors which do not fully complement each other. A typical example isthe integration of GNSS and Loran-C: both systems provide positionfixes based on RF techniques but differ in terms of system architecture,signal structure, etc.

  • Analytical redundancy is based on a predefined knowledge of the system models. This knowledge may refer to kinematic modeling withrespect to the measurement environment, e.g., in case of a line-basedtrajectory on a given network; map aiding discussed in Sect. 13.4.5belongs to this category. As far as the dynamic model is concerned,preknowledge of velocity and acceleration limitations may be given.

Updating process

The multisensor technique requires appropriate methods of updating the navigation solution by redundant information. Several methods may solve this task:
Signal blending (averaging) is usually applied in case of parallel redundancy. When using several sensors of different quality, weighted averaging is applied. Signal blending does not take into account a dynamic model.
Filtering tries to achieve a more realistic processing of the signals by involving a dynamic model of the motion. In case of conventional filtering, stationary stochastic covariance models are used for the updating process.
Optimal filtering employs time-variant stochastic covariance modelsand is achieved by Kalman filtering which is commonly applied for updating the state vector gained by multisensor navigation systems.

相关文章

  • 冗余信息

    摘自 Dr. Bernhard Hofmann-Wellenhof, Dr. Klaus Legat, Dr. M...

  • 视频的码率、帧率、分辨率

    视频编码的基本原理:视频图像数据有极强的相关性,也就是说有大量的冗余信息。其中冗余信息可分为空域冗余信息和时域冗余...

  • 吴军老师的《信息论》学习笔记-2

    信息冗余度与压缩、相关性 一、信息冗余度 1、定义:在信息论中,我们采用一种叫做冗余度的概念对信息的这种“密集”和...

  • 及时清理冗余信息

    文/疯语小咖 撰于2020.11.09 上周末,还是没有完成应该完成的事情,总是把上周的任务甩到下一周,紧接着就面...

  • 直观理解-信息熵&KL Divergence

    信息熵 简介 任何信息都存在冗余,冗余大小与信息中每个符号的出现概率或者说不确定性有关。 信息熵用于解决对信息的量...

  • 音视频之音频知识入门

    信息论的观点来看,描述信源的数据是信息和数据冗余之和,即:数据=信息+数据冗余。音频信号在时域和频域上具有相关性,...

  • 数据流压缩原理和数据压缩Zlib的实现

    1. 压缩原理deflate算法 压缩的本质就是去冗余,去除信息冗余,使用最短的编码保存最完整的数据信息。所以对于...

  • 音视频入门——H.264编码(宏块+片+帧)浅析

    H.264编码原理 (1)图像冗余信息:空间冗余、时间冗余(2)视频编码关键点:压缩比、算法复杂度、还原度(3)H...

  • 信息论之信息冗余

    很早的时候远程通信苦于噪声干扰,于是人们只能不断的增强信号的发射功率,但是相应的噪声的功率也在增强,干扰问题并没有...

  • 03-随笔

    最近在得到,跟着吴军老师学习《信息论》,今天讲到冗余度。语言中,冗余度有几个好处:便于理解,消除歧义,信息的容错性...

网友评论

    本文标题:冗余信息

    本文链接:https://www.haomeiwen.com/subject/ghqzmttx.html