如果某日百度的用户检索量下降了5%,该如何分析其原因,说明思路和要点。(百度-2014)
1.题目分析
本题考查点:数据分析、业务分解。通过产品核心数据来紧密跟踪产品的运营状态,是每一个PM的基本能力。而一旦某项数据产生重大波动,PM能够通过对业务进行抽丝剥茧的分析来迅速定位问题点,从而寻找和明确解决方案。要想回答好本题,既需要有较强的数据分析能力,也需要对搜索业务有一个比较深入的理解。
2.回答策略
本题可以从以下四个角度进行阐述:
1)明确问题是什么?(哪个指标出了问题)
2)问题有多大?(预期影响面估算)
3)分析的目的是什么?(重大因素排查→问题精确定位→止损)
4)分析的方式是什么?(从全局到细分,从常见到非常见,从严重到相对影响较小,逐层排查数据,并借助各种手段逐渐定位问题)
3.背景知识
答题前,先了解下面三个与搜索相关的问题。
(1)检索量是什么?一般情况下每发起一次检索请求记为一次检索,当同一用户发起多次检索时记为多个检索量,而当同一用户在短时间内检索同一搜索词时,不重复累计。
(2)下降5%是什么概念?以Google 2013年给出的旧闻来看,当时Google月检索量过1000亿次,折算日均33亿次,以2013~2015年50%以上的增幅来看,现在Google保守估计日均检索量为50亿次。由于中文检索市场的强大,百度达到这个体量也并非难事,那么下降5%意味着损失了过亿次检索量,天然的单一突发事件(如娱乐新闻等)几乎不可能造成这么大的检索量流失。
(3)检索量下降这个事情要怎么看待?无论是骤降还是平缓下降,5%的非预期性下降都是极为敏感的,所以需要第一时间做出反应,观察期不可能拖太久,所以需要迅速完成“重大因素排查→问题精确定位→止损”的步骤。
第一步:数据异常分析的基础数据层面要点有哪些?
1)全局指标分析。全局指标包含但不限于一段合理的时间段内的检索量、独立用户数、总CTR、首次点击时间、翻页率等。以上全局指标可用于排查全局性问题,比如节日、重大事件效应,另外可以发现用户行为异常以进一步缩小问题范围。
2)分渠道数据分析。主要统计多个维度不同渠道的指标,渠道可以按引流方式、地域、浏览器、操作系统、运营商等分类。此步骤主要用于观察渠道数据是否有异常,常常可以定位到如浏览器切换默认搜索引擎、地方运营商劫持之类的问题。
3)用户行为数据分析。在1)和2)的基础上,分析用户不同时间段、不同群体、不同需求类型下的数据情况,另外在1)的基础上,更细致地分析则需要抽取随机(检索词),通过用户session(用户为了得到某个信息而在一段时间内连续搜索的行为)人工排查是否出现行为异常。此步骤主要为排查是否有事件导致用户行为异常,例如开学了,学生们都乖乖回去上课了,可能导致娱乐类搜索量下降。
4)搜索结果数据分析。针对搜索各类型结果做数据分析,分结果类型统计影响面、点击率、结尾点击率等数据。此步骤主要为排查是否出现结果异常,尤其是排查是否线上出现事故。
以上数据需要在定位到原因后严格计算原因造成的检索量损失是否真的吻合实际数据,比如假设认为是某节日引起的,则必须拉取同比数据对比同样该节日的情况下下降数据是否接近,如果仍有较大偏差则不能掉以轻心,需要继续排查直到数据最终符合预期为止。
第二步:除了数据之外,还有哪些手段配合定位原因?
1)舆情监控。舆情监控包括但不限于从内部反馈渠道、微博、论坛、朋友圈等方式收集用户对百度搜索的反馈,一般来说,过亿的检索量影响是极有可能在舆情层面发现问题的。
2)其他产品线监控。除了第一步4)中提到的基本数据之外,实际上其他产品线监控数据也是可以协助排查问题的,例如行为异常,其他类似贴吧、视频之类的产品线可以提供佐证数据。
3.详细解答
为了分析百度检索量下降5%的原因,可以按照以下步骤进行分析。
(1)排查全局指标,排查以下因素
1)同比数据是否有同级别下降?排查是否周期性影响,如节日、重大赛事影响等。
2)环比数据特征?平稳下降还是骤跌?排查突发性事件还是累积性事件。
3)排查CTR、首点时间、翻页率等,确认是否有全局性影响因素导致用户数据异常。
(2)排查分渠道数据,排查以下因素
1)是否出现个别地区大幅下跌?
2)是否出现个别运营商大幅下跌?
3)是否出现个别UA大幅下跌?……(其他可能性不赘述)
(3)排查用户行为变化,排查以下因素
1)是否某群体使用百度的量减小?
2)是否某类需求在百度搜索减少?
3)是否某些场景下使用百度的量减小?……(其他可能性不赘述)
(4)排查搜索结果变化,挨个儿追查产品线上线、下线情况,主要排查是否出现事故
(5)同时结合舆情、同类/相关产品线,进行协助分析排查完成后,定位到某个具体原因,然后根据具体原因来考虑止损方案。
------------笔记来源:产品经理面试攻略
网友评论