这是重头写BERT网络结构的,应该还要学一个预训练的才好用。
代码
'''
code by Tae Hwan Jung(Jeff Jung) @graykode, modify by wmathor
Reference : https://github.com/jadore801120/attention-is-all-you-need-pytorch
https://github.com/JayParks/transformer, https://github.com/dhlee347/pytorchic-bert
'''
import re
import math
import torch
import numpy as np
from random import *
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as Data
text = (
'Hello, how are you? I am Romeo.\n' # R
'Hello, Romeo My name is Juliet. Nice to meet you.\n' # J
'Nice meet you too. How are you today?\n' # R
'Great. My baseball team won the competition.\n' # J
'Oh Congratulations, Juliet\n' # R
'Thank you Romeo\n' # J
'Where are you going today?\n' # R
'I am going shopping. What about you?\n' # J
'I am going to visit my grandmother. she is not very well' # R
)
sentences = re.sub("[.,!?\\-]", '', text.lower()).split('\n') # filter '.', ',', '?', '!'
word_list = list(set(" ".join(sentences).split())) # ['hello', 'how', 'are', 'you',...]
word2idx = {'[PAD]' : 0, '[CLS]' : 1, '[SEP]' : 2, '[MASK]' : 3}
for i, w in enumerate(word_list):
word2idx[w] = i + 4
idx2word = {i: w for i, w in enumerate(word2idx)}
vocab_size = len(word2idx)
token_list = list()
for sentence in sentences:
arr = [word2idx[s] for s in sentence.split()]
token_list.append(arr)
print(token_list)
# BERT Parameters
maxlen = 30
batch_size = 6
max_pred = 5 # max tokens of prediction
n_layers = 6
n_heads = 12
d_model = 768
d_ff = 768*4 # 4*d_model, FeedForward dimension
d_k = d_v = 64 # dimension of K(=Q), V
n_segments = 2
# sample IsNext and NotNext to be same in small batch size
def make_data():
batch = []
positive = negative = 0
while positive != batch_size / 2 or negative != batch_size / 2:
tokens_a_index, tokens_b_index = randrange(len(sentences)), randrange(
len(sentences)) # sample random index in sentences
tokens_a, tokens_b = token_list[tokens_a_index], token_list[tokens_b_index]
input_ids = [word2idx['[CLS]']] + tokens_a + [word2idx['[SEP]']] + tokens_b + [word2idx['[SEP]']]
segment_ids = [0] * (1 + len(tokens_a) + 1) + [1] * (len(tokens_b) + 1)
# MASK LM
n_pred = min(max_pred, max(1, int(len(input_ids) * 0.15))) # 15 % of tokens in one sentence
cand_maked_pos = [i for i, token in enumerate(input_ids)
if token != word2idx['[CLS]'] and token != word2idx['[SEP]']] # candidate masked position
shuffle(cand_maked_pos)
masked_tokens, masked_pos = [], []
for pos in cand_maked_pos[:n_pred]:
masked_pos.append(pos)
masked_tokens.append(input_ids[pos])
if random() < 0.8: # 80%
input_ids[pos] = word2idx['[MASK]'] # make mask
elif random() > 0.9: # 10%
index = randint(0, vocab_size - 1) # random index in vocabulary
while index < 4: # can't involve 'CLS', 'SEP', 'PAD'
index = randint(0, vocab_size - 1)
input_ids[pos] = index # replace
# Zero Paddings
n_pad = maxlen - len(input_ids)
input_ids.extend([0] * n_pad)
segment_ids.extend([0] * n_pad)
# Zero Padding (100% - 15%) tokens
if max_pred > n_pred:
n_pad = max_pred - n_pred
masked_tokens.extend([0] * n_pad)
masked_pos.extend([0] * n_pad)
if tokens_a_index + 1 == tokens_b_index and positive < batch_size / 2:
batch.append([input_ids, segment_ids, masked_tokens, masked_pos, True]) # IsNext
positive += 1
elif tokens_a_index + 1 != tokens_b_index and negative < batch_size / 2:
batch.append([input_ids, segment_ids, masked_tokens, masked_pos, False]) # NotNext
negative += 1
return batch
# Proprecessing Finished
batch = make_data()
input_ids, segment_ids, masked_tokens, masked_pos, isNext = zip(*batch)
input_ids, segment_ids, masked_tokens, masked_pos, isNext = \
torch.LongTensor(input_ids), torch.LongTensor(segment_ids), torch.LongTensor(masked_tokens), \
torch.LongTensor(masked_pos), torch.LongTensor(isNext)
class MyDataSet(Data.Dataset):
def __init__(self, input_ids, segment_ids, masked_tokens, masked_pos, isNext):
self.input_ids = input_ids
self.segment_ids = segment_ids
self.masked_tokens = masked_tokens
self.masked_pos = masked_pos
self.isNext = isNext
def __len__(self):
return len(self.input_ids)
def __getitem__(self, idx):
return self.input_ids[idx], self.segment_ids[idx], self.masked_tokens[idx], self.masked_pos[idx], self.isNext[
idx]
loader = Data.DataLoader(MyDataSet(input_ids, segment_ids, masked_tokens, masked_pos, isNext), batch_size, True)
def get_attn_pad_mask(seq_q, seq_k):
batch_size, seq_len = seq_q.size()
# eq(zero) is PAD token
pad_attn_mask = seq_q.data.eq(0).unsqueeze(1) # [batch_size, 1, seq_len]
return pad_attn_mask.expand(batch_size, seq_len, seq_len) # [batch_size, seq_len, seq_len]
def gelu(x):
"""
Implementation of the gelu activation function.
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
Also see https://arxiv.org/abs/1606.08415
"""
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
class Embedding(nn.Module):
def __init__(self):
super(Embedding, self).__init__()
self.tok_embed = nn.Embedding(vocab_size, d_model) # token embedding
self.pos_embed = nn.Embedding(maxlen, d_model) # position embedding
self.seg_embed = nn.Embedding(n_segments, d_model) # segment(token type) embedding
self.norm = nn.LayerNorm(d_model)
def forward(self, x, seg):
seq_len = x.size(1)
pos = torch.arange(seq_len, dtype=torch.long)
pos = pos.unsqueeze(0).expand_as(x) # [seq_len] -> [batch_size, seq_len]
embedding = self.tok_embed(x) + self.pos_embed(pos) + self.seg_embed(seg)
return self.norm(embedding)
class ScaledDotProductAttention(nn.Module):
def __init__(self):
super(ScaledDotProductAttention, self).__init__()
def forward(self, Q, K, V, attn_mask):
scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(d_k) # scores : [batch_size, n_heads, seq_len, seq_len]
scores.masked_fill_(attn_mask, -1e9) # Fills elements of self tensor with value where mask is one.
attn = nn.Softmax(dim=-1)(scores)
context = torch.matmul(attn, V)
return context
class MultiHeadAttention(nn.Module):
def __init__(self):
super(MultiHeadAttention, self).__init__()
self.W_Q = nn.Linear(d_model, d_k * n_heads)
self.W_K = nn.Linear(d_model, d_k * n_heads)
self.W_V = nn.Linear(d_model, d_v * n_heads)
def forward(self, Q, K, V, attn_mask):
# q: [batch_size, seq_len, d_model], k: [batch_size, seq_len, d_model], v: [batch_size, seq_len, d_model]
residual, batch_size = Q, Q.size(0)
# (B, S, D) -proj-> (B, S, D) -split-> (B, S, H, W) -trans-> (B, H, S, W)
q_s = self.W_Q(Q).view(batch_size, -1, n_heads, d_k).transpose(1,2) # q_s: [batch_size, n_heads, seq_len, d_k]
k_s = self.W_K(K).view(batch_size, -1, n_heads, d_k).transpose(1,2) # k_s: [batch_size, n_heads, seq_len, d_k]
v_s = self.W_V(V).view(batch_size, -1, n_heads, d_v).transpose(1,2) # v_s: [batch_size, n_heads, seq_len, d_v]
attn_mask = attn_mask.unsqueeze(1).repeat(1, n_heads, 1, 1) # attn_mask : [batch_size, n_heads, seq_len, seq_len]
# context: [batch_size, n_heads, seq_len, d_v], attn: [batch_size, n_heads, seq_len, seq_len]
context = ScaledDotProductAttention()(q_s, k_s, v_s, attn_mask)
context = context.transpose(1, 2).contiguous().view(batch_size, -1, n_heads * d_v) # context: [batch_size, seq_len, n_heads * d_v]
output = nn.Linear(n_heads * d_v, d_model)(context)
return nn.LayerNorm(d_model)(output + residual) # output: [batch_size, seq_len, d_model]
class PoswiseFeedForwardNet(nn.Module):
def __init__(self):
super(PoswiseFeedForwardNet, self).__init__()
self.fc1 = nn.Linear(d_model, d_ff)
self.fc2 = nn.Linear(d_ff, d_model)
def forward(self, x):
# (batch_size, seq_len, d_model) -> (batch_size, seq_len, d_ff) -> (batch_size, seq_len, d_model)
return self.fc2(gelu(self.fc1(x)))
class EncoderLayer(nn.Module):
def __init__(self):
super(EncoderLayer, self).__init__()
self.enc_self_attn = MultiHeadAttention()
self.pos_ffn = PoswiseFeedForwardNet()
def forward(self, enc_inputs, enc_self_attn_mask):
enc_outputs = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs, enc_self_attn_mask) # enc_inputs to same Q,K,V
enc_outputs = self.pos_ffn(enc_outputs) # enc_outputs: [batch_size, seq_len, d_model]
return enc_outputs
class BERT(nn.Module):
def __init__(self):
super(BERT, self).__init__()
self.embedding = Embedding()
self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)])
self.fc = nn.Sequential(
nn.Linear(d_model, d_model),
nn.Dropout(0.5),
nn.Tanh(),
)
self.classifier = nn.Linear(d_model, 2)
self.linear = nn.Linear(d_model, d_model)
self.activ2 = gelu
# fc2 is shared with embedding layer
embed_weight = self.embedding.tok_embed.weight
self.fc2 = nn.Linear(d_model, vocab_size, bias=False)
self.fc2.weight = embed_weight
def forward(self, input_ids, segment_ids, masked_pos):
output = self.embedding(input_ids, segment_ids) # [bach_size, seq_len, d_model]
enc_self_attn_mask = get_attn_pad_mask(input_ids, input_ids) # [batch_size, maxlen, maxlen]
for layer in self.layers:
# output: [batch_size, max_len, d_model]
output = layer(output, enc_self_attn_mask)
# it will be decided by first token(CLS)
h_pooled = self.fc(output[:, 0]) # [batch_size, d_model]
logits_clsf = self.classifier(h_pooled) # [batch_size, 2] predict isNext
masked_pos = masked_pos[:, :, None].expand(-1, -1, d_model) # [batch_size, max_pred, d_model]
h_masked = torch.gather(output, 1, masked_pos) # masking position [batch_size, max_pred, d_model]
h_masked = self.activ2(self.linear(h_masked)) # [batch_size, max_pred, d_model]
logits_lm = self.fc2(h_masked) # [batch_size, max_pred, vocab_size]
return logits_lm, logits_clsf
model = BERT()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adadelta(model.parameters(), lr=0.001)
for epoch in range(10):
for input_ids, segment_ids, masked_tokens, masked_pos, isNext in loader:
logits_lm, logits_clsf = model(input_ids, segment_ids, masked_pos)
loss_lm = criterion(logits_lm.view(-1, vocab_size), masked_tokens.view(-1)) # for masked LM
loss_lm = (loss_lm.float()).mean()
loss_clsf = criterion(logits_clsf, isNext) # for sentence classification
loss = loss_lm + loss_clsf
if (epoch + 1) % 10 == 0:
print('Epoch:', '%04d' % (epoch + 1), 'loss =', '{:.6f}'.format(loss))
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Predict mask tokens ans isNext
input_ids, segment_ids, masked_tokens, masked_pos, isNext = batch[0]
print(text)
print([idx2word[w] for w in input_ids if idx2word[w] != '[PAD]'])
logits_lm, logits_clsf = model(torch.LongTensor([input_ids]), \
torch.LongTensor([segment_ids]), torch.LongTensor([masked_pos]))
logits_lm = logits_lm.data.max(2)[1][0].data.numpy()
print('masked tokens list : ',[pos for pos in masked_tokens if pos != 0])
print('predict masked tokens list : ',[pos for pos in logits_lm if pos != 0])
logits_clsf = logits_clsf.data.max(1)[1].data.numpy()[0]
print('isNext : ', True if isNext else False)
print('predict isNext : ',True if logits_clsf else False)
输出
C:\Users\ccc\AppData\Local\Programs\Python\Python310\python.exe D:\tmp\textclass\pytorch_bert.py
[[5, 18, 22, 39, 33, 31, 8], [5, 8, 19, 17, 27, 12, 24, 10, 7, 39], [24, 7, 39, 4, 18, 22, 39, 6], [32, 19, 37, 21, 16, 28, 13], [25, 34, 12], [14, 39, 8], [35, 22, 39, 15, 6], [33, 31, 15, 29, 20, 26, 39], [33, 31, 15, 10, 30, 19, 11, 23, 27, 38, 9, 36]]
Epoch: 0010 loss = 1.368778
Hello, how are you? I am Romeo.
Hello, Romeo My name is Juliet. Nice to meet you.
Nice meet you too. How are you today?
Great. My baseball team won the competition.
Oh Congratulations, Juliet
Thank you Romeo
Where are you going today?
I am going shopping. What about you?
I am going to visit my grandmother. she is not very well
['[CLS]', 'hello', 'how', 'are', '[MASK]', 'i', 'am', 'romeo', '[SEP]', 'great', 'my', 'baseball', 'team', 'won', 'the', 'competition', '[SEP]']
masked tokens list : [39, 19]
predict masked tokens list : [39, 19]
isNext : False
predict isNext : True
Process finished with exit code 0
网友评论