美文网首页ggplot2绘图plot做图
R语言~绘制对半小提琴图

R语言~绘制对半小提琴图

作者: Oodelay | 来源:发表于2022-07-26 09:42 被阅读0次

    最近,众多学术期刊上开始出现一些让人眼前一亮的高颜值小提琴图。在网上搜罗一番,发现,规范的称呼应该是split violin。直译有点太抽象了,暂且译为对半小提琴吧。

    该功能来自网址https://stackoverflow.com/questions/35717353/split-violin-plot-with-ggplot2。其中列举了两种方法,一种是建立了一个功能geo_split_violin直接嵌入ggplot中,无需过多设置,无脑操作即可;另一种是手动打造,先分组求密度分布曲线,然后通过调整分组轴上的坐标位置来实现错位,但是需要对数据进行转换,而且面对更多分组的时候,就需要特别的设置,门槛略高。

    以下示例基于自己的数据
    加载工具包

    library(reshape2)
    library(dplyr)
    library(rfPermute)
    library(phyloseq)
    library(lmerTest)
    library(lme4)
    library(car)
    library(piecewiseSEM)
    

    加载整理数据

    load('../01_filter_and_rarefy_Bacteria/.RData')
    
    remove(physeq)
    sample_variables(rarefy)
    rarefy = subset_samples(rarefy, NP<100&EC<2000&CN<150& (!Sequencing_ID_16s_18s%in% c('M24','M12','M30')))
    map = data.frame(sample_data(rarefy))
    map = mutate(map,Latitude = abs(Latitude), 
                 group = case_when(Vegetation == 'Forest'~ 'Forest', TRUE ~ 'NonForest'))
    map$group = as.factor(map$group)
    

    新建向量存储分组变量,以便后文直接引用

    envs = c('Latitude', "Elevation", "Slope", # geologic 
             "MAT", "AI", # climate
             "Plant_cover",  # plant
             "pH", "EC", "Clay_silt", 'WHC','TP') # soil 
    
    funs = c("BG","PHOS","NAG","Rb","PO4","NO3", "NH4", 'NPP', 'ORC')
    

    计算物种多样性

    richness = estimate_richness(rarefy, measures="Observed")
    rownames(richness) == map$Global_Atlas_Order
    map$Bacteria_richness = richness$Observed
    map$Global_Atlas_Order = NULL
    

    混合效应模型

    forest_scale = mutate_if(forest, is.numeric, scale)
    nonforest_scale = mutate_if(nonforest, is.numeric, scale)
    
    # additive formular
    formular00 =as.formula(
      paste("Bacteria_richness~", 
            paste(c(envs, 'Forest','(1|CLIMA2)','(1|LandUse)'), collapse="+")))
    formular01 =as.formula(
      paste("Plant_richness~", 
            paste(c(envs, 'Forest','(1|CLIMA2)','(1|LandUse)'), collapse="+")))
    
    lmer01 =  lmer(formular00, data = mutate(rbind(forest_scale, nonforest_scale), 
                                            Forest = case_when(group == 'Forest' ~1, TRUE~0)))
    lmer02 =  lmer(formular01, data = mutate(rbind(forest_scale, nonforest_scale), 
                                            Forest = case_when(group == 'Forest' ~1, TRUE~0)))
    
    

    混合效应模型的结果评估

    anova(lmer01,type="I")
    summary(lmer01)
    vif(lmer01)
    rsquared(lmer01)
    

    混合效应模型的bootstrap 检验

    lmer_boot01 = bootMer(lmer01,fixef,nsim = 1000,parallel = "snow")
    lmer_boot02 = bootMer(lmer02,fixef,nsim = 1000,parallel = "snow")
    lmer_boot0 = rbind(data.frame(melt(lmer_boot01$t), group = 'Bacteria'),
                      data.frame(melt(lmer_boot02$t), group = 'Plant'))
    

    结果整理,因子排序,并设置出图顺序

    lmer_boot0 = subset(lmer_boot0, Var2 != '(Intercept)', select = c(Var2, value, group))
    lmer_boot0$Var2 = gsub('_',' ',lmer_boot0$Var2)
    test0 = aggregate(value~group*Var2, lmer_boot0, median) %>% arrange(group, desc(value))
    lmer_boot0$Var2 = factor(lmer_boot0$Var2, levels = test0$Var2[1:12])
    

    两个小花样

    #方便后文绘图时,设置间隔性阴影背景来增加多个分组的区分度
    odds0 <- seq(1, 12, 2)
    rect0 = lmer_boot0[odds0,]
    #文章开头提到的那个***split_violin***函数内容有点多,直接放在本空间里有点臃肿,选择新建一个外挂直接调用。
    source('utiles.R')
    

    绘图

    lmer_boot0_plt = ggplot(lmer_boot0, aes(Var2, value, fill = group)) + 
      geom_rect(data = rect0,
                xmin = odds0 - 0.5,
                xmax = odds0 + 0.5,
                ymin = -Inf, ymax = +Inf,
                fill = 'grey', alpha = 0.5, inherit.aes = F) +
      geom_hline(yintercept = 0, lty = 2, color = 'black') +
      geom_split_violin() +
      theme_classic()+
      labs(x = NULL, y = 'standardized effect on diversity',fill = NULL) +
      theme(legend.position = c(0.8, 0.9),
            legend.text = element_text(color = 'black'),
            legend.background = element_blank(),
            legend.key.size = unit(0.3,'cm'),
            axis.text = element_text(color = 'black'),
            axis.title = element_text(color = 'black'),
            axis.text.x = element_text(angle = 45, hjust = 1, vjust = 1))
    
    lmer0.jpg

    下面分页箱线图插入间隔行的阴影背景请查考这里

    lmers.jpg

    相关文章

      网友评论

        本文标题:R语言~绘制对半小提琴图

        本文链接:https://www.haomeiwen.com/subject/glxoirtx.html