美文网首页R plotIMP researchplot
ggpubr包绘制SCI文章图(基础知识)

ggpubr包绘制SCI文章图(基础知识)

作者: 单细胞空间交响乐 | 来源:发表于2021-06-26 11:07 被阅读0次

最近年中总结,我们学习一些基础知识,还有几天总结就结束了,期待FFPE做空间转录组大放异彩

安装及加载ggpubr

安装方式有两种:

  • 直接从CRAN安装:
install.packages("ggpubr")

  • GitHub上安装最新版本:
if(!require(devtools)) install.packages("devtools")
 devtools::install_github("kassambara/ggpubr")

安装完之后直接加载就行:

library(ggpubr)

ggpubr可绘制图形:

ggpubr可绘制大部分我们常用的图形,下面一一介绍。

分布图(Distribution)

#构建数据集
set.seed(1234)
df <- data.frame( sex=factor(rep(c("f", "M"), each=200)), 
weight=c(rnorm(200, 55), rnorm(200, 58)))
head(df)

##   sex   weight
## 1  f   53.79293
## 2  f   55.27743
## 3  f   56.08444
## 4  f   52.65430
## 5  f   55.42912
## 6  f   55.50606

密度分布图以及边际地毯线并添加平均值线

ggdensity(df, x="weight", add = "mean", rug = TRUE, color = "sex", fill = "sex",
palette = c("#00AFBB", "#E7B800"))

image

带有均值线和边际地毯线的直方图

gghistogram(df, x="weight", add = "mean", rug = TRUE, color = "sex", fill = "sex",
palette = c("#00AFBB", "#E7B800"))

image

箱线图与小提琴图

#加载数据集ToothGrowth
data("ToothGrowth")
df1 <- ToothGrowth
head(df1)

##    len  supp  dose
## 1  4.2   VC    0.5
## 2  11.5  VC    0.5
## 3  7.3   VC    0.5
## 4  5.8   VC    0.5
## 5  6.4   VC    0.5
## 6  10.0  VC    0.5

p <- ggboxplot(df1, x="dose", y="len", color = "dose", 
palette = c("#00AFBB", "#E7B800", "#FC4E07"), 
add = "jitter", shape="dose")#增加了jitter点,点shape由dose映射p

image

增加不同组间的p-value值,可以自定义需要标注的组间比较

my_comparisons <- list(c("0.5", "1"), c("1", "2"), c("0.5", "2"))
p+stat_compare_means(comparisons = my_comparisons)+#不同组间的比较
stat_compare_means(label.y = 50)

image

内有箱线图的小提琴图

ggviolin(df1, x="dose", y="len", fill = "dose", 
palette = c("#00AFBB", "#E7B800", "#FC4E07"), 
add = "boxplot", add.params = list(fill="white"))+ 
stat_compare_means(comparisons = my_comparisons, label = "p.signif")+#label这里表示选择显著性标记(星号) 
stat_compare_means(label.y = 50)

image

条形图

data("mtcars")
df2 <- mtcars
df2$cyl <- factor(df2$cyl)
df2$name <- rownames(df2)#添加一行name
head(df2[, c("name", "wt", "mpg", "cyl")])

image

按从小到大顺序绘制条形图(不分组排序)

ggbarplot(df2, x="name", y="mpg", fill = "cyl", color = "white", 
palette = "jco",#杂志jco的配色 
sort.val = "desc",#下降排序 
sort.by.groups=FALSE,#不按组排序 
x.text.angle=60)

image

按组进行排序

ggbarplot(df2, x="name", y="mpg", fill = "cyl", color = "white", 
palette = "jco",#杂志jco的配色 
sort.val = "asc",#上升排序,区别于desc,具体看图演示 
sort.by.groups=TRUE,#按组排序 
x.text.angle=90)

image

偏差图

偏差图展示了与参考值之间的偏差

df2$mpg_z <- (df2$mpg-mean(df2$mpg))/sd(df2$mpg)
df2$mpg_grp <- factor(ifelse(df2$mpg_z<0, "low", "high"), levels = c("low", "high"))
head(df2[, c("name", "wt", "mpg", "mpg_grp", "cyl")])

image

绘制排序过的条形图

ggbarplot(df2, x="name", y="mpg_z", fill = "mpg_grp", color = "white", 
palette = "jco", sort.val = "asc", sort.by.groups = FALSE, x.text.angle=60, 
ylab = "MPG z-score", xlab = FALSE, legend.title="MPG Group")

image

坐标轴变换

ggbarplot(df2, x="name", y="mpg_z", fill = "mpg_grp", color = "white", 
palette = "jco", sort.val = "desc", sort.by.groups = FALSE, 
x.text.angle=90, ylab = "MPG z-score", xlab = FALSE, 
legend.title="MPG Group", rotate=TRUE, ggtheme = theme_minimal())

image

点图(Dot charts)

棒棒糖图(Lollipop chart)

棒棒图可以代替条形图展示数据

ggdotchart(df2, x="name", y="mpg", color = "cyl", 
palette = c("#00AFBB", "#E7B800", "#FC4E07"), sorting = "ascending", 
add = "segments", ggtheme = theme_pubr())

image

可以自设置各种参数

ggdotchart(df2, x="name", y="mpg", color = "cyl", 
palette = c("#00AFBB", "#E7B800", "#FC4E07"), sorting = "descending", 
add = "segments", rotate = TRUE, group = "cyl", dot.size = 6, 
label = round(df2$mpg), font.label = list(color="white", size=9, vjust=0.5), 
ggtheme = theme_pubr())

image

偏差图

ggdotchart(df2, x="name", y="mpg_z", color = "cyl", 
palette = c("#00AFBB", "#E7B800", "#FC4E07"), sorting = "descending", 
add = "segment", add.params = list(color="lightgray", size=2), 
group = "cyl", dot.size = 6, label = round(df2$mpg_z, 1), 
font.label = list(color="white", size=9, vjust=0.5), ggtheme = theme_pubr())+ 
geom_line(yintercept=0, linetype=2, color="lightgray")

image

Cleveland点图

ggdotchart(df2, x="name", y="mpg", color = "cyl", 
palette = c("#00AFBB", "#E7B800", "#FC4E07"), sorting = "descending", 
rotate = TRUE, dot.size = 2, y.text.col=TRUE, ggtheme = theme_pubr())+ 
theme_cleveland()

image

当然,还有很多其他的图表功能

3. 更多

image image.png image image

Make MA-plot which is a scatter plot of log2 fold changes (on the y-axis) versus the mean expression signal (on the x-axis).

image

MA plot充分展示了基因丰度和表达变化之间的关系。我们可以看到,越靠左下或者右上的点,就是丰度越高而且变化幅度越大的基因。当然了,MA plot就丢了FDR这类统计量。二维图嘛,死活两个参数,顶多用颜色做个假三维。
不过对于终端小白用户来说,如果在volcano plot和MA plot中发现了重叠的靶点(实际上会有不少重叠),那就愉快地拿去做实验吧。

  • 基因丰度:基因组中某基因的拷贝数。
  • 基因表达丰度:某基因转录的mRNA数量。可以用RT-qPCR来检测。
  • 表达变化(fold change):就是倍数变化,假设A基因表达值为1,B表达值为3,那么B的表达就是A的3倍。一般我们都用count、TPM或FPKM来衡量基因表达水平,所以基因表达值肯定是非负数,那么fold change的取值就是(0, +∞).
  • 差异的显著性:P-value来衡量。假设检验首先必须要有假设,我们假设A和B的表达没有差异(H0,零假设),然后基于此假设,通过t test(以RT-PCR为例)算出我们观测到的A和B出现的概率,就得到了P-value,如果P-value<0.05,那么说明小概率事件出现了,我们应该拒绝零假设,即A和B的表达不一样,即有显著差异。

基础知识,多多学习

相关文章

网友评论

    本文标题:ggpubr包绘制SCI文章图(基础知识)

    本文链接:https://www.haomeiwen.com/subject/jgtzyltx.html