1、数据就是把FPKM读进去
行名是基因,列名是样品
1688776895536.png
2、对样品分组,第一列是样品,第二列是直径
1688776868098.png
data <- read.csv("uniqueFPKM.csv",sep = ",",header = T,check.names = F,row.names = 1)
rownames(data) <- data$gene
data <- data[,-1]
library(FactoMineR)
library(factoextra)
library(ggplot2)
PCAdata <- t(data)
gene.pca <- PCA(PCAdata,
ncp = 2, #指定主成分分析(PCA)的主成分数目
scale.unit = TRUE,#是否对数据进行单位缩放
graph = FALSE)#是否绘制PCA结果的图形,默认为TRUE
plot(gene.pca) #PCA 简图
group <- read.csv("group.txt",header = T,sep = "\t")
sizes <- abs(group[,2])
type <- as.vector(group[,1])
fviz_pca_ind(gene.pca,
col.ind=type,
mean.point=F,
geom ="point",
pointshape=1, # 点形状
pointsize=sizes,# 点大小
#addEllipses = T, #置信圈
#ellipse.type="confidence",
#ellipse.level=0.9,
legend.title="Type",
palette = c("navy", "firebrick"))+ #Cell配色哦
theme(panel.border = element_rect(fill=NA,color="black", size=1, linetype="solid"))+#加个边框
scale_size(range = c(2, 6))
fviz_pca_ind(gene.pca,
col.ind=type,
mean.point=F,
geom ="point",
pointshape=1, # 点形状
pointsize=sizes,# 点大小
#addEllipses = T, #置信圈
#ellipse.type="confidence",
#ellipse.level=0.9,
legend.title="Type",
palette = c("navy", "firebrick"))+ #Cell配色哦
theme(panel.border = element_rect(fill=NA,color="black", size=1, linetype="solid"))+#加个边框
scale_size(range = c(2, 6))
image.png
####-----markergene-------
ZP2 <- data["ZP2",1:151]
ZP2_value<- c(t(ZP2))
fviz_pca_ind(gene.pca,
mean.point=F,
geom ="point",
col.ind = ZP2_value,
pointshape=16, # 点形状
legend.title="Expression",
pointsize=3)+# 点大小
scale_color_continuous(low = "gray", high = "red")+
theme(panel.border = element_rect(fill=NA,color="black", size=1, linetype="solid"))+
theme(panel.grid = element_blank())+
ggtitle("ZP2")+
theme(plot.title = element_text(hjust = 0.5))+
xlab("PC1")+theme(axis.title.x = element_text(hjust = 0.5))+
ylab("PC2")+theme(axis.title.x = element_text(hjust = 0.5))
网友评论