美文网首页android开发专题
深入理解Java中的底层阻塞原理及实现

深入理解Java中的底层阻塞原理及实现

作者: Java大生 | 来源:发表于2019-03-02 11:31 被阅读53次

谈到阻塞,相信大家都不会陌生了。阻塞的应用场景真的多得不要不要的,比如 生产-消费模式,限流统计等等。什么 ArrayBlockingQueue、 LinkedBlockingQueue、DelayQueue 等等,都是阻塞队列的实现啊,多简单!

阻塞,一般有两个特性很亮眼:1. 不耗 CPU 等待;2. 线程安全;

额,要这么说也 OK 的。毕竟,我们遇到的问题,到这里就够解决了。但是有没有想过,这容器的阻塞又是如何实现的呢?

好吧,翻开源码,也很简单了:(比如 ArrayBlockingQueue 的 take、put….)

// ArrayBlockingQueue

/**

 * Inserts the specified element at the tail of this queue, waiting

 * for space to become available if the queue is full.

 *

 * @throws InterruptedException {@inheritDoc}

 * @throws NullPointerException {@inheritDoc}

 */

publicvoidput(E e)throwsInterruptedException {

    checkNotNull(e);

finalReentrantLock lock =this.lock;

    lock.lockInterruptibly();

try{

while(count == items.length)

            // 阻塞的点

            notFull.await();

        enqueue(e);

}finally{

        lock.unlock();

    }

}

/**

 * Inserts the specified element at the tail of this queue, waiting

 * up to the specified wait time for space to become available if

 * the queue is full.

 *

 * @throws InterruptedException {@inheritDoc}

 * @throws NullPointerException {@inheritDoc}

 */

publicbooleanoffer(E e,longtimeout, TimeUnit unit)

throwsInterruptedException {

    checkNotNull(e);

longnanos = unit.toNanos(timeout);

finalReentrantLock lock =this.lock;

    lock.lockInterruptibly();

try{

while(count == items.length) {

if(nanos <= 0)

returnfalse;

            // 阻塞的点

            nanos = notFull.awaitNanos(nanos);

        }

        enqueue(e);

returntrue;

}finally{

        lock.unlock();

    }

}

publicE take()throwsInterruptedException {

finalReentrantLock lock =this.lock;

    lock.lockInterruptibly();

try{

while(count == 0)

            // 阻塞的点

            notEmpty.await();

returndequeue();

}finally{

        lock.unlock();

    }

}

看来,最终都是依赖了AbstractQueuedSynchronizer类(著名的AQS)的await方法,看起来像那么回事。那么这个同步器的阻塞又是如何实现的呢?

Java的代码总是好跟踪的:

// AbstractQueuedSynchronizer.await()

/**

 * Implements interruptible condition wait.

 * <ol>

 * <li> If current thread is interrupted, throw InterruptedException.

 * <li> Save lock state returned by {@link #getState}.

 * <li> Invoke {@link #release} with saved state as argument,

 *      throwing IllegalMonitorStateException if it fails.

 * <li> Block until signalled or interrupted.

 * <li> Reacquire by invoking specialized version of

 *      {@link #acquire} with saved state as argument.

 * <li> If interrupted while blocked in step 4, throw InterruptedException.

 * </ol>

 */

publicfinalvoidawait()throwsInterruptedException {

if(Thread.interrupted())

thrownewInterruptedException();

    Node node = addConditionWaiter();

intsavedState = fullyRelease(node);

intinterruptMode = 0;

while(!isOnSyncQueue(node)) {

        // 此处进行真正的阻塞

LockSupport.park(this);

if((interruptMode = checkInterruptWhileWaiting(node)) != 0)

break;

    }

if(acquireQueued(node, savedState) && interruptMode != THROW_IE)

        interruptMode = REINTERRUPT;

if(node.nextWaiter !=null) // clean up if cancelled

        unlinkCancelledWaiters();

if(interruptMode != 0)

        reportInterruptAfterWait(interruptMode);

}

如上,可以看到,真正的阻塞工作又转交给了另一个工具类:LockSupportpark方法了,这回跟锁扯上了关系,看起来已经越来越接近事实了:

// LockSupport.park()

/**

 * Disables the current thread for thread scheduling purposes unless the

 * permit is available.

 *

 * <p>If the permit is available then it is consumed and the call returns

 * immediately; otherwise

 * the current thread becomes disabled for thread scheduling

 * purposes and lies dormant until one of three things happens:

 *

 * <ul>

 * <li>Some other thread invokes {@link #unpark unpark} with the

 * current thread as the target; or

 *

 * <li>Some other thread {@linkplain Thread#interrupt interrupts}

 * the current thread; or

 *

 * <li>The call spuriously (that is, for no reason) returns.

 * </ul>

 *

 * <p>This method does <em>not</em> report which of these caused the

 * method to return. Callers should re-check the conditions which caused

 * the thread to park in the first place. Callers may also determine,

 * for example, the interrupt status of the thread upon return.

 *

 * @param blocker the synchronization object responsible for this

 *        thread parking

 * @since 1.6

 */

publicstaticvoidpark(Object blocker) {

    Thread t = Thread.currentThread();

    setBlocker(t, blocker);

UNSAFE.park(false, 0L);

setBlocker(t,null);

}

看得出来,这里的实现就比较简洁了,先获取当前线程,设置阻塞对象,阻塞,然后解除阻塞。

好吧,到底什么是真正的阻塞,我们还是不得而知!

UNSAFE.park(false, 0L);是个什么东西? 看起来就是这一句起到了最关键的作用呢!但由于这里已经是 native 代码,我们已经无法再简单的查看源码了!那咋整呢?

那不行就看C/C++的源码呗,看一下 parker 的定义(park.hpp):

classParker :publicos::PlatformParker {

private:

volatileint_counter ;

  Parker * FreeNext ;

  JavaThread * AssociatedWith ; // Current association

public:

  Parker() : PlatformParker() {

    _counter       = 0 ;

    FreeNext       = NULL ;

    AssociatedWith = NULL ;

  }

protected:

  ~Parker() { ShouldNotReachHere(); }

public:

  // For simplicity of interface with Java, all forms of park (indefinite,

  // relative, and absolute) are multiplexed into one call.  c中暴露出两个方法给java调用

voidpark(boolisAbsolute, jlongtime);

voidunpark();

  // Lifecycle operators

staticParker * Allocate (JavaThread * t) ;

staticvoidRelease (Parker * e) ;

private:

staticParker *volatileFreeList ;

staticvolatileintListLock ;

};

park()方法到底是如何实现的呢? 其实是继承的os::PlatformParker的功能,也就是平台相关的私有实现,以 Linux 平台实现为例(os_linux.hpp):

// Linux中的parker定义

classPlatformParker :publicCHeapObj {

protected:

enum{

        REL_INDEX = 0,

        ABS_INDEX = 1

    };

int_cur_index;  // which cond is in use: -1, 0, 1

    pthread_mutex_t _mutex [1] ;

    pthread_cond_t  _cond  [2] ; // one for relative times and one for abs.

public:       // TODO-FIXME: make dtor private

    ~PlatformParker() { guarantee (0, "invariant") ; }

public:

    PlatformParker() {

intstatus;

      status = pthread_cond_init (&_cond[REL_INDEX], os::Linux::condAttr());

      assert_status(status == 0, status, "cond_init rel");

      status = pthread_cond_init (&_cond[ABS_INDEX], NULL);

      assert_status(status == 0, status, "cond_init abs");

      status = pthread_mutex_init (_mutex, NULL);

      assert_status(status == 0, status, "mutex_init");

      _cur_index = -1; // mark as unused

    }

};

看到 park.cpp 中没有重写 park() 和 unpark() 方法,也就是说阻塞实现完全交由特定平台代码处理了(os_linux.cpp):

// park方法的实现,依赖于 _counter, _mutex[1], _cond[2]

voidParker::park(boolisAbsolute, jlongtime) {

  // Ideally we'd do something useful while spinning, such

  // as calling unpackTime().

  // Optional fast-path check:

  // Return immediately if a permit is available.

  // We depend on Atomic::xchg() having full barrier semantics

  // since we are doing a lock-free update to _counter.

if(Atomic::xchg(0, &_counter) > 0)return;

Thread*thread= Thread::current();

assert(thread->is_Java_thread(), "Must be JavaThread");

JavaThread *jt = (JavaThread *)thread;

  // Optional optimization -- avoid state transitions if there's an interrupt pending.

  // Check interrupt before trying to wait

if(Thread::is_interrupted(thread,false)) {

return;

  }

  // Next, demultiplex/decode time arguments

  timespec absTime;

if(time< 0 || (isAbsolute &&time== 0) ) { // don't wait at all

return;

  }

if(time> 0) {

unpackTime(&absTime, isAbsolute,time);

  }

  // Enter safepoint region

  // Beware of deadlocks such as 6317397.

  // The per-thread Parker:: mutex is a classic leaf-lock.

  // In particular a thread must never block on the Threads_lock while

  // holding the Parker:: mutex.  If safepoints are pending both the

  // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.

  ThreadBlockInVM tbivm(jt);

  // Don't wait if cannot get lock since interference arises from

  // unblocking.  Also. check interrupt before trying wait

if(Thread::is_interrupted(thread,false) || pthread_mutex_trylock(_mutex) != 0) {

return;

  }

intstatus ;

if(_counter > 0)  { // no wait needed

    _counter = 0;

    status = pthread_mutex_unlock(_mutex);

assert(status == 0, "invariant") ;

    // Paranoia to ensure our locked and lock-free paths interact

    // correctly with each other and Java-level accesses.

    OrderAccess::fence();

return;

  }

#ifdef ASSERT

  // Don't catch signals while blocked; let the running threads have the signals.

  // (This allows a debugger to break into the running thread.)

  sigset_t oldsigs;

  sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();

  pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);

#endif

OSThreadWaitState osts(thread->osthread(),false/* not Object.wait() */);

  jt->set_suspend_equivalent();

  // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()

assert(_cur_index == -1, "invariant");

if(time== 0) {

    _cur_index = REL_INDEX; // arbitrary choice when not timed

    status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;

}else{

    _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;

    status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;

if(status != 0 && WorkAroundNPTLTimedWaitHang) {

      pthread_cond_destroy (&_cond[_cur_index]) ;

      pthread_cond_init    (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());

    }

  }

  _cur_index = -1;

  assert_status(status == 0 || status == EINTR ||

                status == ETIME || status == ETIMEDOUT,

                status, "cond_timedwait");

#ifdef ASSERT

  pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);

#endif

  _counter = 0 ;

  status = pthread_mutex_unlock(_mutex) ;

  assert_status(status == 0, status, "invariant") ;

  // Paranoia to ensure our locked and lock-free paths interact

  // correctly with each other and Java-level accesses.

  OrderAccess::fence();

  // If externally suspended while waiting, re-suspend

if(jt->handle_special_suspend_equivalent_condition()) {

    jt->java_suspend_self();

  }

}

// unpark 实现,相对简单些

voidParker::unpark() {

ints, status ;

  status = pthread_mutex_lock(_mutex);

assert(status == 0, "invariant") ;

  s = _counter;

  _counter = 1;

if(s < 1) {

    // thread might be parked

if(_cur_index != -1) {

      // thread is definitely parked

if(WorkAroundNPTLTimedWaitHang) {

        status = pthread_cond_signal (&_cond[_cur_index]);

assert(status == 0, "invariant");

        status = pthread_mutex_unlock(_mutex);

assert(status == 0, "invariant");

}else{

        // must capture correct index before unlocking

intindex = _cur_index;

        status = pthread_mutex_unlock(_mutex);

assert(status == 0, "invariant");

        status = pthread_cond_signal (&_cond[index]);

assert(status == 0, "invariant");

      }

}else{

      pthread_mutex_unlock(_mutex);

assert(status == 0, "invariant") ;

    }

}else{

    pthread_mutex_unlock(_mutex);

assert(status == 0, "invariant") ;

  }

}

从上面代码可以看出,阻塞主要借助于三个变量,_cond、_mutex、_counter, 调用 Linux 系统的pthread_cond_wait、pthread_mutex_lock、pthread_mutex_unlock(一组 POSIX 标准的阻塞接口)等平台相关的方法进行阻塞了!

而 park.cpp 中,则只有  Allocate、Release 等的一些常规操作!

// 6399321 As a temporary measure we copied & modified the ParkEvent::

// allocate() and release() code for use by Parkers.  The Parker:: forms

// will eventually be removed as we consolide and shift over to ParkEvents

// for both builtin synchronization and JSR166 operations.

volatileintParker::ListLock = 0 ;

Parker *volatileParker::FreeList = NULL ;

Parker * Parker::Allocate (JavaThread * t) {

  guarantee (t != NULL, "invariant") ;

  Parker * p ;

  // Start by trying to recycle an existing but unassociated

  // Parker from the global free list.

  // 8028280: using concurrent free list without memory management can leak

  // pretty badly it turns out.

  Thread::SpinAcquire(&ListLock, "ParkerFreeListAllocate");

  {

    p = FreeList;

if(p != NULL) {

      FreeList = p->FreeNext;

    }

  }

  Thread::SpinRelease(&ListLock);

if(p != NULL) {

    guarantee (p->AssociatedWith == NULL, "invariant") ;

}else{

    // Do this the hard way -- materialize a new Parker..

p =newParker() ;

  }

  p->AssociatedWith = t ;          // Associate p with t

  p->FreeNext       = NULL ;

returnp ;

}

voidParker::Release (Parker * p) {

if(p == NULL)return;

  guarantee (p->AssociatedWith != NULL, "invariant") ;

  guarantee (p->FreeNext == NULL      , "invariant") ;

  p->AssociatedWith = NULL ;

  Thread::SpinAcquire(&ListLock, "ParkerFreeListRelease");

  {

    p->FreeNext = FreeList;

    FreeList = p;

  }

  Thread::SpinRelease(&ListLock);

}

综上源码,在进行阻塞的时候,底层并没有(并不一定)要用 while 死循环来阻塞,更多的是借助于操作系统的实现来进行阻塞的。当然,这也更符合大家的猜想!

从上的代码我们也发现一点,底层在做许多事的时候,都不忘考虑线程中断,也就是说,即使在阻塞状态也是可以接收中断信号的,这为上层语言打开了方便之门。

如果要细说阻塞,其实还远没完,不过再往操作系统层面如何实现,就得再下点功夫,去翻翻资料了,把底线压在操作系统层面,大多数情况下也够用了!

欢迎学Java和大数据的朋友们加入java架构交流: 855835163

加群链接:https://jq.qq.com/?_wv=1027&amp;k=5dPqXGI

群内提供免费的架构资料还有:Java工程化、高性能及分布式、高性能、深入浅出。高架构。性能调优、Spring,MyBatis,Netty源码分析和大数据等多个知识点高级进阶干货的免费直播讲解  可以进来一起学习交流哦

相关文章

网友评论

    本文标题:深入理解Java中的底层阻塞原理及实现

    本文链接:https://www.haomeiwen.com/subject/gqreuqtx.html