谈到阻塞,相信大家都不会陌生了。阻塞的应用场景真的多得不要不要的,比如生产消费模式,限流统计等等。什么 ArrayBlockingQueue,LinkedBlockingQueue,DelayQueue... 都是阻塞队列的实现啊,多简单!
阻塞,一般有两个特性很亮眼:
-
不耗 cpu 的等待;
-
线程安全;
额,要这么说也 ok 的。毕竟,我们遇到的问题,到这里就够解决了。但是有没有想过,这容器的阻塞又是如何实现的呢?
好吧,翻开源码,也很简单了:(比如 ArrayBlockingQueue 的 take、put....)
// ArrayBlockingQueue
/**
* Inserts the specified element at the tail of this queue, waiting
* for space to become available if the queue is full.
*
* @throws InterruptedException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
*/
public void put(E e) throws InterruptedException {
checkNotNull(e);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
while (count == items.length)
// 阻塞的点
notFull.await();
enqueue(e);
} finally {
lock.unlock();
}
}
/**
* Inserts the specified element at the tail of this queue, waiting
* up to the specified wait time for space to become available if
* the queue is full.
*
* @throws InterruptedException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
*/
public boolean offer(E e, long timeout, TimeUnit unit)
throws InterruptedException {
checkNotNull(e);
long nanos = unit.toNanos(timeout);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
while (count == items.length) {
if (nanos <= 0)
return false;
// 阻塞的点
nanos = notFull.awaitNanos(nanos);
}
enqueue(e);
return true;
} finally {
lock.unlock();
}
}
public E take() throws InterruptedException {
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
while (count == 0)
// 阻塞的点
notEmpty.await();
return dequeue();
} finally {
lock.unlock();
}
}
看来,最终都是依赖了 AbstractQueuedSynchronizer 类(著名的 AQS)的 await()
方法,看起来像那么回事。那么这个同步器的阻塞又是如何实现的呢?
java 的代码总是好跟踪的:
// AbstractQueuedSynchronizer.await()
/**
* Implements interruptible condition wait.
* <ol>
* <li> If current thread is interrupted, throw InterruptedException.
* <li> Save lock state returned by {@link #getState}.
* <li> Invoke {@link #release} with saved state as argument,
* throwing IllegalMonitorStateException if it fails.
* <li> Block until signalled or interrupted.
* <li> Reacquire by invoking specialized version of
* {@link #acquire} with saved state as argument.
* <li> If interrupted while blocked in step 4, throw InterruptedException.
* </ol>
*/
public final void await() throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
Node node = addConditionWaiter();
int savedState = fullyRelease(node);
int interruptMode = 0;
while (!isOnSyncQueue(node)) {
// 此处进行真正的阻塞
LockSupport.park(this);
if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
break;
}
if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
interruptMode = REINTERRUPT;
if (node.nextWaiter != null) // clean up if cancelled
unlinkCancelledWaiters();
if (interruptMode != 0)
reportInterruptAfterWait(interruptMode);
}
如上,可以看到,真正的阻塞工作又转交给了另一个工具类:LockSupport
的 park()
方法了,这回跟锁扯上了关系,看起来已经越来越接近事实了:
// LockSupport.park()
/**
* Disables the current thread for thread scheduling purposes unless the
* permit is available.
*
* <p>If the permit is available then it is consumed and the call returns
* immediately; otherwise
* the current thread becomes disabled for thread scheduling
* purposes and lies dormant until one of three things happens:
*
* <ul>
* <li>Some other thread invokes {@link #unpark unpark} with the
* current thread as the target; or
*
* <li>Some other thread {@linkplain Thread#interrupt interrupts}
* the current thread; or
*
* <li>The call spuriously (that is, for no reason) returns.
* </ul>
*
* <p>This method does <em>not</em> report which of these caused the
* method to return. Callers should re-check the conditions which caused
* the thread to park in the first place. Callers may also determine,
* for example, the interrupt status of the thread upon return.
*
* @param blocker the synchronization object responsible for this
* thread parking
* @since 1.6
*/
public static void park(Object blocker) {
Thread t = Thread.currentThread();
setBlocker(t, blocker);
UNSAFE.park(false, 0L);
setBlocker(t, null);
}
看得出来,这里的实现就比较简洁了,先获取当前线程,设置阻塞对象,阻塞,然后解除阻塞。好吧,到底什么是真正的阻塞,我们还是不得而知!
UNSAFE.park(false, 0L);
是个什么东西? 看起来就是这一句起到了最关键的作用呢!但由于这里已经是 native 代码,我们已经无法再简单的查看源码了!那咋整呢?
那不行就看 C/C++ 的源码呗,看一下 parker
的定义(park.hpp):
class Parker : public os::PlatformParker {
private:
volatile int _counter ;
Parker * FreeNext ;
JavaThread * AssociatedWith ; // Current association
public:
Parker() : PlatformParker() {
_counter = 0 ;
FreeNext = NULL ;
AssociatedWith = NULL ;
}
protected:
~Parker() { ShouldNotReachHere(); }
public:
// For simplicity of interface with Java, all forms of park (indefinite,
// relative, and absolute) are multiplexed into one call. c中暴露出两个方法给java调用
void park(bool isAbsolute, jlong time);
void unpark();
// Lifecycle operators
static Parker * Allocate (JavaThread * t) ;
static void Release (Parker * e) ;
private:
static Parker * volatile FreeList ;
static volatile int ListLock ;
};
那 park()
方法到底是如何实现的呢? 其实是继承的 os::PlatformParker
的功能,也就是平台相关的私有实现,以 linux 平台实现为例(os_linux.hpp):
// linux中的parker定义
class PlatformParker : public CHeapObj<mtInternal> {
protected:
enum {
REL_INDEX = 0,
ABS_INDEX = 1
};
int _cur_index; // which cond is in use: -1, 0, 1
pthread_mutex_t _mutex [1] ;
pthread_cond_t _cond [2] ; // one for relative times and one for abs.
public: // TODO-FIXME: make dtor private
~PlatformParker() { guarantee (0, "invariant") ; }
public:
PlatformParker() {
int status;
status = pthread_cond_init (&_cond[REL_INDEX], os::Linux::condAttr());
assert_status(status == 0, status, "cond_init rel");
status = pthread_cond_init (&_cond[ABS_INDEX], NULL);
assert_status(status == 0, status, "cond_init abs");
status = pthread_mutex_init (_mutex, NULL);
assert_status(status == 0, status, "mutex_init");
_cur_index = -1; // mark as unused
}
};
看到 park.cpp 中没有重写 park()
和 unpark()
方法,也就是说阻塞实现完全交由特定平台代码处理了(os_linux.cpp):
// park方法的实现,依赖于 _counter, _mutex[1], _cond[2]
void Parker::park(bool isAbsolute, jlong time) {
// Ideally we'd do something useful while spinning, such
// as calling unpackTime().
// Optional fast-path check:
// Return immediately if a permit is available.
// We depend on Atomic::xchg() having full barrier semantics
// since we are doing a lock-free update to _counter.
if (Atomic::xchg(0, &_counter) > 0) return;
Thread* thread = Thread::current();
assert(thread->is_Java_thread(), "Must be JavaThread");
JavaThread *jt = (JavaThread *)thread;
// Optional optimization -- avoid state transitions if there's an interrupt pending.
// Check interrupt before trying to wait
if (Thread::is_interrupted(thread, false)) {
return;
}
// Next, demultiplex/decode time arguments
timespec absTime;
if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
return;
}
if (time > 0) {
unpackTime(&absTime, isAbsolute, time);
}
// Enter safepoint region
// Beware of deadlocks such as 6317397.
// The per-thread Parker:: mutex is a classic leaf-lock.
// In particular a thread must never block on the Threads_lock while
// holding the Parker:: mutex. If safepoints are pending both the
// the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
ThreadBlockInVM tbivm(jt);
// Don't wait if cannot get lock since interference arises from
// unblocking. Also. check interrupt before trying wait
if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
return;
}
int status ;
if (_counter > 0) { // no wait needed
_counter = 0;
status = pthread_mutex_unlock(_mutex);
assert (status == 0, "invariant") ;
// Paranoia to ensure our locked and lock-free paths interact
// correctly with each other and Java-level accesses.
OrderAccess::fence();
return;
}
#ifdef ASSERT
// Don't catch signals while blocked; let the running threads have the signals.
// (This allows a debugger to break into the running thread.)
sigset_t oldsigs;
sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
#endif
OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
jt->set_suspend_equivalent();
// cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
assert(_cur_index == -1, "invariant");
if (time == 0) {
_cur_index = REL_INDEX; // arbitrary choice when not timed
status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;
} else {
_cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;
if (status != 0 && WorkAroundNPTLTimedWaitHang) {
pthread_cond_destroy (&_cond[_cur_index]) ;
pthread_cond_init (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
}
}
_cur_index = -1;
assert_status(status == 0 || status == EINTR ||
status == ETIME || status == ETIMEDOUT,
status, "cond_timedwait");
#ifdef ASSERT
pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
#endif
_counter = 0 ;
status = pthread_mutex_unlock(_mutex) ;
assert_status(status == 0, status, "invariant") ;
// Paranoia to ensure our locked and lock-free paths interact
// correctly with each other and Java-level accesses.
OrderAccess::fence();
// If externally suspended while waiting, re-suspend
if (jt->handle_special_suspend_equivalent_condition()) {
jt->java_suspend_self();
}
}
// unpark 实现,相对简单些
void Parker::unpark() {
int s, status ;
status = pthread_mutex_lock(_mutex);
assert (status == 0, "invariant") ;
s = _counter;
_counter = 1;
if (s < 1) {
// thread might be parked
if (_cur_index != -1) {
// thread is definitely parked
if (WorkAroundNPTLTimedWaitHang) {
status = pthread_cond_signal (&_cond[_cur_index]);
assert (status == 0, "invariant");
status = pthread_mutex_unlock(_mutex);
assert (status == 0, "invariant");
} else {
// must capture correct index before unlocking
int index = _cur_index;
status = pthread_mutex_unlock(_mutex);
assert (status == 0, "invariant");
status = pthread_cond_signal (&_cond[index]);
assert (status == 0, "invariant");
}
} else {
pthread_mutex_unlock(_mutex);
assert (status == 0, "invariant") ;
}
} else {
pthread_mutex_unlock(_mutex);
assert (status == 0, "invariant") ;
}
}
从上面代码可以看出,阻塞主要借助于三个变量,_cond, _mutex, _counter, 调用 linux 系统的 pthread_cond_wait,pthread_mutex_lock,pthread_mutex_unlock(一组 POSIX 标准的阻塞接口)等平台相关的方法进行阻塞了!而 park.cpp 中,则只有 Allocate、Release 等的一些常规操作!
// 6399321 As a temporary measure we copied & modified the ParkEvent::
// allocate() and release() code for use by Parkers. The Parker:: forms
// will eventually be removed as we consolide and shift over to ParkEvents
// for both builtin synchronization and JSR166 operations.
volatile int Parker::ListLock = 0 ;
Parker * volatile Parker::FreeList = NULL ;
Parker * Parker::Allocate (JavaThread * t) {
guarantee (t != NULL, "invariant") ;
Parker * p ;
// Start by trying to recycle an existing but unassociated
// Parker from the global free list.
// 8028280: using concurrent free list without memory management can leak
// pretty badly it turns out.
Thread::SpinAcquire(&ListLock, "ParkerFreeListAllocate");
{
p = FreeList;
if (p != NULL) {
FreeList = p->FreeNext;
}
}
Thread::SpinRelease(&ListLock);
if (p != NULL) {
guarantee (p->AssociatedWith == NULL, "invariant") ;
} else {
// Do this the hard way -- materialize a new Parker..
p = new Parker() ;
}
p->AssociatedWith = t ; // Associate p with t
p->FreeNext = NULL ;
return p ;
}
void Parker::Release (Parker * p) {
if (p == NULL) return ;
guarantee (p->AssociatedWith != NULL, "invariant") ;
guarantee (p->FreeNext == NULL , "invariant") ;
p->AssociatedWith = NULL ;
Thread::SpinAcquire(&ListLock, "ParkerFreeListRelease");
{
p->FreeNext = FreeList;
FreeList = p;
}
Thread::SpinRelease(&ListLock);
}
综上源码,在进行阻塞的时候,底层并没有(并不一定)要用 while 死循环来阻塞,更多的是借助于操作系统的实现来进行阻塞的。当然,这也更符合大家的猜想!
从上的代码我们也发现一点,底层在做许多事的时候,都不忘考虑线程中断,也就是说,即使在阻塞状态也是可以接收中断信号的,这为上层语言打开了方便之门。
如果要细说阻塞,其实还远没完,不过再往操作系统层面如何实现,就得再下点功夫,去翻翻资料了,把底线压在操作系统层面,大多数情况下也够用了!
翻译:等你归去来
原文链接:http://www.cnblogs.com/yougewe/p/9751501.html
网友评论