一、项目简介
随着信息时代的快速发展,电子邮件作为人们日常沟通的重要方式也变得日益普及。然而,随之而来的垃圾邮件问题不可避免地困扰着用户,对邮件通信质量造成负面影响。为了解决这一问题,我们开发了基于朴素贝叶斯算法和TF-IDF特征提取的邮件分类系统。
技术方面,我们借助Python编程语言和Sklearn、Flask、Echarts等库与框架,构建了这个功能强大的系统。朴素贝叶斯算法被选作核心分类算法,通过Sklearn库实现模型训练和分类,以提高系统的准确性。TF-IDF算法用于邮件特征提取,进一步优化了分类性能。
系统功能包括邮件检测与数据管理两大模块。邮件检测模块通过朴素贝叶斯算法和TF-IDF特征提取,对邮件进行准确分类,解决了垃圾邮件的问题。数据管理模块涵盖了数据存储、分析和可视化,通过Echarts库将检测日志内容以词云、分类饼状图和流量折线图的形式进行可视化展示,使用户能够直观了解邮件流量和分类情况。
这个系统的意义在于为用户提供了一个高效、智能的垃圾邮件分类解决方案。通过朴素贝叶斯算法,我们可以在海量的邮件中迅速准确地筛选出垃圾邮件,提升了邮件通信质量,释放了邮箱存储空间。同时,数据分析和可视化功能让用户能够更好地了解邮件流量和分类情况,为邮件管理提供了有力的支持。这样的系统符合现代社会信息化发展的趋势,对个人、企业和社会都具有积极的意义。
二、开发环境
开发环境 版本/工具
PYTHON 3.6.8
开发工具 PyCharm
操作系统 Windows 10
内存要求 8GB 以上
浏览器 Firefox (推荐)、Google Chrome (推荐)、Edge
数据库 MySQL 8.0 (推荐)
数据库工具 Navicat Premium 15 (推荐)
项目框架 FLASK、Skite-learn
三、项目技术
Python: 作为开发语言,用于编写后端逻辑和数据处理。
Flask: Python的Web框架,用于搭建后端数据接口和处理HTTP请求。
PyMySQL: 用于Python与MySQL数据库的交互,实现数据的存储和读取。
Echarts: JavaScript的数据可视化库,将数据转化为图表形式展示给用户。
LAYUI: 轻量级前端UI框架,用于构建用户友好的交互界面。
JavaScript: 用于实现前端交互和处理用户输入。
HTML和CSS: 用于构建前端界面和样式设计。
scikit-learn、pandas和numpy: Python的数据处理和机器学习库,用于数据预测和分析。
AJAX: 用于实现前后端数据交互,异步请求后端数据接口。
MySQL: 数据库管理系统,用于持久化数据。
四、功能结构
系统功能结构图

邮件检测与分类模块
功能描述
用户可以将邮件内容输入系统,系统基于朴素贝叶斯算法和TF-IDF特征提取进行邮件分类。将邮件分为垃圾邮件和正常邮件,以净化用户的邮箱。
技术实现简介
使用Sklearn库实现朴素贝叶斯算法模型的训练,将训练好的模型应用于用户输入的邮件内容,进行分类判别。TF-IDF算法用于对邮件内容进行特征提取,生成特征向量。
数据管理模块
功能描述
此模块负责存储和管理系统处理的邮件数据,包括垃圾邮件和正常邮件的分类结果,以及相关的检测日志。
技术实现简介
使用MySQL数据库进行数据存储,将邮件分类结果、检测日志等信息存储于数据库中。通过SQL语句实现对数据的存取、管理、查询等操作。
可视化分析模块
功能描述
提供对系统运行情况的数据分析和可视化展示,包括词云展示常见关键词、饼状图展示邮件分类比例、折线图展示检测流量趋势等。
技术实现简介
使用Echarts技术实现数据的可视化分析,根据数据从数据库中提取相应信息并以图表的形式展示。使用JavaScript对Echarts进行配置和调用,呈现给用户直观的数据分析结果。
这三个模块共同构成了整个系统的功能结构。邮件检测与分类模块解决了垃圾邮件分类问题,数据管理模块负责数据的存储和管理,可视化分析模块则通过图表直观展示数据分析结果,为用户提供全面的邮件管理解决方案。
五、运行截图







网友评论