什么是Hive
Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供类SQL查询功能。
Hive架构
image.png基本组成
用户接口:包括CLI、JDBC/ODBC、WebGUI。其中,CLI(command line interface)为shell命令行;JDBC/ODBC是Hive的JAVA实现,与传统数据库JDBC类似;WebGUI是通过浏览器访问Hive。
元数据存储:通常是存储在关系数据库如mysql/derby中。Hive 将元数据存储在数据库中。Hive 中的元数据包括表的名字,表的列和分区及其属性,表的属性(是否为外部表等),表的数据所在目录等。
解释器、编译器、优化器、执行器:完成HQL 查询语句从词法分析、语法分析、编译、优化以及查询计划的生成。生成的查询计划存储在HDFS 中,并在随后有MapReduce 调用执行
Hive与传统数据库对比
image.png总结:hive具有sql数据库的外表,但应用场景完全不同,hive只适合用来做批量数据统计分析
-
[a1]查询语言。由于 SQL 被广泛的应用在数据仓库中,因此,专门针对 Hive 的特性设计了类 SQL 的查询语言 HQL。熟悉 SQL 开发的开发者可以很方便的使用 Hive 进行开发。
-
数据存储位置。Hive 是建立在 Hadoop 之上的,所有 Hive 的数据都是存储在 HDFS 中的。而数据库则可以将数据保存在块设备或者本地文件系统中。
-
数据格式。Hive 中没有定义专门的数据格式,数据格式可以由用户指定,用户定义数据格式需要指定三个属性:列分隔符(通常为空格、”\t”、”\x001″)、行分隔符(”\n”)以及读取文件数据的方法(Hive 中默认有三个文件格式 TextFile,SequenceFile 以及 RCFile)。由于在加载数据的过程中,不需要从用户数据格式到 Hive 定义的数据格式的转换,因此,Hive 在加载的过程中不会对数据本身进行任何修改,而只是将数据内容复制或者移动到相应的 HDFS 目录中。而在数据库中,不同的数据库有不同的存储引擎,定义了自己的数据格式。所有数据都会按照一定的组织存储,因此,数据库加载数据的过程会比较耗时。
-
数据更新。由于 Hive 是针对数据仓库应用设计的,而数据仓库的内容是读多写少的。因此,Hive 中不支持对数据的改写和添加,所有的数据都是在加载的时候中确定好的。而数据库中的数据通常是需要经常进行修改的,因此可以使用 INSERT INTO ... VALUES 添加数据,使用 UPDATE ... SET 修改数据。
-
索引。之前已经说过,Hive 在加载数据的过程中不会对数据进行任何处理,甚至不会对数据进行扫描,因此也没有对数据中的某些 Key 建立索引。Hive 要访问数据中满足条件的特定值时,需要暴力扫描整个数据,因此访问延迟较高。由于 MapReduce 的引入, Hive 可以并行访问数据,因此即使没有索引,对于大数据量的访问,Hive 仍然可以体现出优势。数据库中,通常会针对一个或者几个列建立索引,因此对于少量的特定条件的数据的访问,数据库可以有很高的效率,较低的延迟。由于数据的访问延迟较高,决定了 Hive 不适合在线数据查询。
-
执行。Hive 中大多数查询的执行是通过 Hadoop 提供的 MapReduce 来实现的,而数据库通常有自己的执行引擎。
-
执行延迟。之前提到,Hive 在查询数据的时候,由于没有索引,需要扫描整个表,因此延迟较高。另外一个导致 Hive 执行延迟高的因素是 MapReduce 框架。由于 MapReduce 本身具有较高的延迟,因此在利用 MapReduce 执行 Hive 查询时,也会有较高的延迟。相对的,数据库的执行延迟较低。当然,这个低是有条件的,即数据规模较小,当数据规模大到超过数据库的处理能力的时候,Hive 的并行计算显然能体现出优势。
-
可扩展性。由于 Hive 是建立在 Hadoop 之上的,因此 Hive 的可扩展性是和 Hadoop 的可扩展性是一致的(世界上最大的 Hadoop 集群在 Yahoo!,2009年的规模在 4000 台节点左右)。而数据库由于 ACID 语义的严格限制,扩展行非常有限。目前最先进的并行数据库 Oracle 在理论上的扩展能力也只有 100 台左右。
-
数据规模。由于 Hive 建立在集群上并可以利用 MapReduce 进行并行计算,因此可以支持很大规模的数据;对应的,数据库可以支持的数据规模较小。
安装
derby版hive直接使用:
1、解压hive
cd /export/softwares
tar -zxvf hive-1.1.0-cdh5.14.0.tar.gz -C ../servers/
2、 直接启动 bin/hive
bin/hive
hive> create database mytest;
缺点:多个地方安装hive后,每一个hive是拥有一套自己的元数据,大家的库、表就不统一;
使用mysql共享hive元数据
mysql安装省略。。。
- 开启mysql远程连接
grant all privileges on *.* to 'root'@'%' identified by '123456' with grant option;
flush privileges;
2.修改hive的配置文件
修改hive-env.sh
添加我们的hadoop的环境变量
cd /export/servers/hive-1.1.0-cdh5.14.0/conf
cp hive-env.sh.template hive-env.sh
vim hive-env.sh
#加入
HADOOP_HOME=/export/servers/hadoop-2.6.0-cdh5.14.0
# Hive Configuration Directory can be controlled by:
export HIVE_CONF_DIR=/export/servers/hive-1.1.0-cdh5.14.0/conf
修改hive-site.xml
cd /export/servers/hive-1.1.0-cdh5.14.0/conf
vim hive-site.xml
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>javax.jdo.option.ConnectionURL</name>
<value>jdbc:mysql://node03.hadoop.com:3306/hive?createDatabaseIfNotExist=true</value>
</property>
<property>
<name>javax.jdo.option.ConnectionDriverName</name>
<value>com.mysql.jdbc.Driver</value>
</property>
<property>
<name>javax.jdo.option.ConnectionUserName</name>
<value>root</value>
</property>
<property>
<name>javax.jdo.option.ConnectionPassword</name>
<value>123456</value>
</property>
<property>
<name>hive.cli.print.current.db</name>
<value>true</value>
</property>
<property>
<name>hive.cli.print.header</name>
<value>true</value>
</property>
<property>
<name>hive.server2.thrift.bind.host</name>
<value>node03.hadoop.com</value>
</property>
<!--
<property>
<name>hive.metastore.uris</name>
<value>thrift://node03.hadoop.com:9083</value>
</property>
-->
</configuration>
上传mysql的lib驱动包
将mysql的lib驱动包上传到hive的lib目录下
cd /export/servers/hive-1.1.0-cdh5.14.0/lib
将mysql-connector-java-5.1.38.jar 上传到这个目录下
使用方式
第一种交互方式:Hive交互shell
bin/hive
查看所有的数据库
hive (default)> show databases;
创建一个数据库
hive (default)> create database myhive;
使用该数据库并创建数据库表
hive (default)> use myhive;
hive (myhive)> create table test(id int,name string);
第二种交互方式:Hive JDBC服务
启动hiveserver2服务
#前台启动
bin/hive --service hiveserver2
#后台启动
nohup bin/hive --service hiveserver2 &
beeline连接hiveserver2
bin/beeline
beeline> !connect jdbc:hive2://node03.hadoop.com:10000
注意:如果使用beeline方式连接hiveserver2,一定要保证hive在mysql当中的元数据库已经创建成功,不然就会拒绝连接
第三种交互方式:Hive命令
使用 –e 参数来直接执行hql的语句
bin/hive -e "use myhive;select * from test;"
使用 –f 参数通过指定文本文件来执行hql的语句
vim hive.sql
use myhive;select * from test;
bin/hive -f hive.sql
更多参数参考以下
image.png
网友评论