如何使用GPU运行TensorFlow
这里主要考虑如何让tensorflow和keras运行在GPU上:
1. 检查显卡类型和计算能力**
查看笔记本显卡型号,以及计算能力
下载个 GPU 查看器,名字为TechPowerUp GPU-Z
下载地址是:
https://www.techpowerup.com/download/gpu-z/
我的电脑显示是这样的:
我笔记本独立显卡产品型号是NVIDA GeForce MX250,但是核心型号是GP108。 image.png
确定对应显卡 GPU 的计算能力
去 NVIDIA 官网查看 https://developer.nvidia.com/cuda-gpus
不过我没有查到计算能力,只看到了相关产品参数https://www.geforce.com/hardware/notebook-gpus/geforce-mx250/features
2. 安装CUDA
下载地址:https://developer.nvidia.com/cuda-downloads
安装包有点大,下载慢,需要耐心等待。安装 cuda 的时候,会询问是否安装显卡驱动,说明 cuda 安装程序里包含了的显卡驱动;
建议先不要安装 cuda 里的显卡驱动,待安装完 cuda 后,执行例子程序,如果报错再检查显卡驱动是否正确,避免覆盖原来的显卡驱动。
安装完后执行 nvcc -V 检查
image.png
然后运行例子:
例子在C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\extras\demo_suite/deviceQuery.exe
至此已经安装 cuda 成功
3. 安装cuDNN
cuDNN 是一个为了优化深度学习计算的类库,它能将模型训练的计算优化之后,再通过 CUDA 调用 GPU 进行运算,当然你也可直接使用 GUDA,而不通过 cuDNN ,但运算效率会低好多
cuDNN 下载地址:https://developer.nvidia.com/cudnn
下载过程会有一堆调查问卷,友好度不好!选择跟CUDA对应的版本 cuDNN
将文件解压,例如解压到D:\software\cuda
解压后有三个子目录:bin,include,lib。将bin目录(例如 D:\software\cuda\bin)添加到环境变量 PATH 中。或者将三个文件夹的内容拷贝到CUDA对应的目录即可。
4. 重新安装tensorflow
之前安装的tensorflow这样安装的pip install tensorflow==1.13.0,现在我换成了pip install tensorflow-gpu==1.15.0.
5. 测试代码
最后对GPU进行一下测试,使用如下代码:
#导入相关的库
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import os
import time
from tensorflow.contrib.tensorboard.plugins import projector
import matplotlib.pyplot as plt
import numpy as np
#这里用slim这个API来进行卷积网络构建
slim = tf.contrib.slim
#定义卷积神经网络模型
#网络架构是卷积网络--最大池化--卷积网络--最大池化---flatten---MLP-softmax的全连接MLP
def model(inputs, is_training, dropout_rate, num_classes, scope='Net'):
inputs = tf.reshape(inputs, [-1, 28, 28, 1])
with tf.variable_scope(scope):
with slim.arg_scope([slim.conv2d, slim.fully_connected],
normalizer_fn=slim.batch_norm):
net = slim.conv2d(inputs, 32, [5, 5], padding='SAME', scope='conv1')
net = slim.max_pool2d(net, 2, stride=2, scope='maxpool1')
tf.summary.histogram("conv1", net)
net = slim.conv2d(net, 64, [5, 5], padding='SAME', scope='conv2')
net = slim.max_pool2d(net, 2, stride=2, scope='maxpool2')
tf.summary.histogram("conv2", net)
net = slim.flatten(net, scope='flatten')
fc1 = slim.fully_connected(net, 1024, scope='fc1')
tf.summary.histogram("fc1", fc1)
net = slim.dropout(fc1, dropout_rate, is_training=is_training, scope='fc1-dropout')
net = slim.fully_connected(net, num_classes, scope='fc2')
return net, fc1
def create_sprite_image(images):
"""更改图片的shape"""
if isinstance(images, list):
images = np.array(images)
img_h = images.shape[1]
img_w = images.shape[2]
n_plots = int(np.ceil(np.sqrt(images.shape[0])))
sprite_image = np.ones((img_h * n_plots, img_w * n_plots))
for i in range(n_plots):
for j in range(n_plots):
this_filter = i * n_plots + j
if this_filter < images.shape[0]:
this_img = images[this_filter]
sprite_image[i * img_h:(i + 1) * img_h,
j * img_w:(j + 1) * img_w] = this_img
return sprite_image
def vector_to_matrix_mnist(mnist_digits):
"""把正常的mnist数字图片(batch,28*28)这个格式,转换为新的张量形状(batch,28,28)"""
return np.reshape(mnist_digits, (-1, 28, 28))
def invert_grayscale(mnist_digits):
"""处理下图片颜色,黑色变白,白色边黑"""
return 1 - mnist_digits
if __name__ == "__main__":
# 定义参数
#学习率
learning_rate = 1e-4
#定义迭代参数
total_epoch = 600
#定义批量
batch_size = 200
#程序运行中打印频率
display_step = 20
#程序运行中保存结果的频率
save_step = 100
load_checkpoint = False
checkpoint_dir = "checkpoint"
checkpoint_name = 'model.ckpt'
#结果存放的路径
logs_path = "logs"
#定义我们使用多少个图片
test_size = 10000
#定义第二层路径
projector_path = 'projector'
# 网络参数
n_input = 28 * 28 # 每个图片是28*28个像素,也就是784个特征
n_classes = 10 # MNIST数据集有0-9是个类别的结果
dropout_rate = 0.5 # Dropout的比率
mnist = input_data.read_data_sets('MNIST-data', one_hot=True)
# 定义计算图
x = tf.placeholder(tf.float32, [None, n_input], name='InputData')
y = tf.placeholder(tf.float32, [None, n_classes], name='LabelData')
is_training = tf.placeholder(tf.bool, name='IsTraining')
keep_prob = dropout_rate
logits, fc1 = model(x, is_training, keep_prob, n_classes)
with tf.name_scope('Loss'):
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y))
tf.summary.scalar("loss", loss)
with tf.name_scope('Accuracy'):
correct_pred = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
tf.summary.scalar("accuracy", accuracy)
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss)
projector_dir = os.path.join(logs_path, projector_path)
path_metadata = os.path.join(projector_dir,'metadata.tsv')
path_sprites = os.path.join(projector_dir, 'mnistdigits.png')
# 检查结果目录的状态
if not os.path.exists(projector_dir):
os.makedirs(projector_dir)
# 这里进行嵌入
mnist_test = input_data.read_data_sets('MNIST-data', one_hot=False)
batch_x_test = mnist_test.test.images[:test_size]
batch_y_test = mnist_test.test.labels[:test_size]
embedding_var = tf.Variable(tf.zeros([test_size, 1024]), name='embedding')
assignment = embedding_var.assign(fc1)
config = projector.ProjectorConfig()
embedding = config.embeddings.add()
embedding.tensor_name = embedding_var.name
embedding.metadata_path = os.path.join(projector_path,'metadata.tsv')
embedding.sprite.image_path = os.path.join(projector_path, 'mnistdigits.png')
embedding.sprite.single_image_dim.extend([28,28])
# 初始化变量
init = tf.global_variables_initializer()
# 'Saver' op to save and restore all the variables
saver = tf.train.Saver()
merged_summary_op = tf.summary.merge_all()
# 运行计算图
with tf.Session() as sess:
sess.run(init)
# Restore model weights from previously saved model
prev_model = tf.train.get_checkpoint_state(checkpoint_dir)
if load_checkpoint:
if prev_model:
saver.restore(sess, prev_model.model_checkpoint_path)
print('Checkpoint found, {}'.format(prev_model))
else:
print('No checkpoint found')
summary_writer = tf.summary.FileWriter(logs_path, graph=tf.get_default_graph())
projector.visualize_embeddings(summary_writer, config)
start_time = time.time()
# 开始训练
for epoch in range(total_epoch):
batch_x, batch_y = mnist.train.next_batch(batch_size)
# reshapeX = np.reshape(batch_x, [-1, 28, 28, 1])
# 开始反向传播算法
sess.run(optimizer, feed_dict={x: batch_x, y: batch_y,
is_training: True})
if epoch % display_step == 0:
# 计算损失和精度
cost, acc, summary = sess.run([loss, accuracy, merged_summary_op],
feed_dict={x: batch_x,
y: batch_y,
is_training: False})
elapsed_time = time.time() - start_time
start_time = time.time()
print('epoch {}, training accuracy: {:.4f}, loss: {:.5f}, time: {}'
.format(epoch, acc, cost, elapsed_time))
summary_writer.add_summary(summary, epoch)
if epoch % save_step == 0:
# 保存训练的结果
sess.run(assignment, feed_dict={x: mnist.test.images[:test_size],
y: mnist.test.labels[:test_size], is_training: False})
checkpoint_path = os.path.join(checkpoint_dir, checkpoint_name)
save_path = saver.save(sess, checkpoint_path)
print("Model saved in file: {}".format(save_path))
# 保存结果
saver.save(sess, os.path.join(logs_path, "model.ckpt"), 1)
# 创建可视化的图片
to_visualise = batch_x_test
to_visualise = vector_to_matrix_mnist(to_visualise)
to_visualise = invert_grayscale(to_visualise)
sprite_image = create_sprite_image(to_visualise)
# 保存可视化的图片
plt.imsave(path_sprites, sprite_image, cmap='gray')
# 写文件
with open(path_metadata, 'w') as f:
f.write("Index\tLabel\n")
for index, label in enumerate(batch_y_test):
f.write("%d\t%d\n" % (index, label))
print("训练完成")
训练过程还是很快的。
最后再看看t-SNE:
image.png
6. 最后看看运行中GPU的情况
这个可直接通过之前下载的GPU-Z软件查看:
image.png
网友评论