美文网首页
6. GraphX中 Graph抽象的结构

6. GraphX中 Graph抽象的结构

作者: GongMeng | 来源:发表于2018-12-12 22:18 被阅读0次

    1. 结构概述

    GraphX在1.6的实际实现和论文还是有一些地方不一样的, 毕竟论文是基于0.94和1.1的spark实现的.
    在Spark GraphX中, 对图的抽象是一个abstract class Graph[VD: ClassTag, ED: ClassTag]
    这个类完成了对图的一系列操作的定义, 后续的图算法也是对Graph进行操作.

    下面退出是源码中对各个方法的注释, 通过英文注释可以方便的理解这些API设计出来的目的.

    2. 基本内部结构

    可以看到和论文中类似的, 整个Graph抽象成 VertexRDD, EdgeRDD, Triplelet.

    /**
     * The Graph abstractly represents a graph with arbitrary objects
     * associated with vertices and edges.  The graph provides basic
     * operations to access and manipulate the data associated with
     * vertices and edges as well as the underlying structure.  Like Spark
     * RDDs, the graph is a functional data-structure in which mutating
     * operations return new graphs.
     *
     * @note [[GraphOps]] contains additional convenience operations and graph algorithms.
     *
     * @tparam VD the vertex attribute type
     * @tparam ED the edge attribute type
     */
    abstract class Graph[VD: ClassTag, ED: ClassTag] protected () extends Serializable {
    
      /**
       * An RDD containing the vertices and their associated attributes.
       *
       * @note vertex ids are unique.
       * @return an RDD containing the vertices in this graph
       */
      val vertices: VertexRDD[VD]
    
      /**
       * An RDD containing the edges and their associated attributes.  The entries in the RDD contain
       * just the source id and target id along with the edge data.
       *
       * @return an RDD containing the edges in this graph
       *
       * @see [[Edge]] for the edge type.
       * @see [[Graph#triplets]] to get an RDD which contains all the edges
       * along with their vertex data.
       *
       */
      val edges: EdgeRDD[ED]
    
      /**
       * An RDD containing the edge triplets, which are edges along with the vertex data associated with
       * the adjacent vertices. The caller should use [[edges]] if the vertex data are not needed, i.e.
       * if only the edge data and adjacent vertex ids are needed.
       *
       * @return an RDD containing edge triplets
       *
       * @example This operation might be used to evaluate a graph
       * coloring where we would like to check that both vertices are a
       * different color.
       * {{{
       * type Color = Int
       * val graph: Graph[Color, Int] = GraphLoader.edgeListFile("hdfs://file.tsv")
       * val numInvalid = graph.triplets.map(e => if (e.src.data == e.dst.data) 1 else 0).sum
       * }}}
       */
      val triplets: RDD[EdgeTriplet[VD, ED]]
    

    3. 基本方法, 也就是图运算中用到的基本的操作

    3.1 和存储状态有关的方法

    用来改变VertexRDDEdgeRDD的存储状态, 和RDD那边本身的方法类似

      /**
       * Caches the vertices and edges associated with this graph at the specified storage level,
       * ignoring any target storage levels previously set.
       *
       * @param newLevel the level at which to cache the graph.
       *
       * @return A reference to this graph for convenience.
       */
      def persist(newLevel: StorageLevel = StorageLevel.MEMORY_ONLY): Graph[VD, ED]
    
      /**
       * Caches the vertices and edges associated with this graph at the previously-specified target
       * storage levels, which default to `MEMORY_ONLY`. This is used to pin a graph in memory enabling
       * multiple queries to reuse the same construction process.
       */
      def cache(): Graph[VD, ED]
    
      /**
       * Mark this Graph for checkpointing. It will be saved to a file inside the checkpoint
       * directory set with SparkContext.setCheckpointDir() and all references to its parent
       * RDDs will be removed. It is strongly recommended that this Graph is persisted in
       * memory, otherwise saving it on a file will require recomputation.
       */
      def checkpoint(): Unit
    
      /**
       * Return whether this Graph has been checkpointed or not.
       * This returns true iff both the vertices RDD and edges RDD have been checkpointed.
       */
      def isCheckpointed: Boolean
    
      /**
       * Gets the name of the files to which this Graph was checkpointed.
       * (The vertices RDD and edges RDD are checkpointed separately.)
       */
      def getCheckpointFiles: Seq[String]
    
      /**
       * Uncaches both vertices and edges of this graph. This is useful in iterative algorithms that
       * build a new graph in each iteration.
       */
      def unpersist(blocking: Boolean = true): Graph[VD, ED]
    
      /**
       * Uncaches only the vertices of this graph, leaving the edges alone. This is useful in iterative
       * algorithms that modify the vertex attributes but reuse the edges. This method can be used to
       * uncache the vertex attributes of previous iterations once they are no longer needed, improving
       * GC performance.
       */
      def unpersistVertices(blocking: Boolean = true): Graph[VD, ED]
    

    3.2 图partition相关的算法

    我们前面有提到说GraphX也是走的vertex cut的路线, 把图从vertex处切分, 然后分布到不同的parition(worker)上进行计算.

    可以看到这里有一个输入PartitionStrategy, 它代表了不同的切分策略, 这些策略在后边会讲解.

      /**
       * Repartitions the edges in the graph according to `partitionStrategy`.
       *
       * @param partitionStrategy the partitioning strategy to use when partitioning the edges
       * in the graph.
       */
      def partitionBy(partitionStrategy: PartitionStrategy): Graph[VD, ED]
    
      /**
       * Repartitions the edges in the graph according to `partitionStrategy`.
       *
       * @param partitionStrategy the partitioning strategy to use when partitioning the edges
       * in the graph.
       * @param numPartitions the number of edge partitions in the new graph.
       */
      def partitionBy(partitionStrategy: PartitionStrategy, numPartitions: Int): Graph[VD, ED]
    

    3.3 Apply / Map相关的方法

    后边通过标题, 可以判断这些方法是为了实现GAS操作的哪些步骤而做的.

      /**
       * Transforms each vertex attribute in the graph using the map function.
       *
       * @note The new graph has the same structure.  As a consequence the underlying index structures
       * can be reused.
       *
       * @param map the function from a vertex object to a new vertex value
       *
       * @tparam VD2 the new vertex data type
       *
       * @example We might use this operation to change the vertex values
       * from one type to another to initialize an algorithm.
       * {{{
       * val rawGraph: Graph[(), ()] = Graph.textFile("hdfs://file")
       * val root = 42
       * var bfsGraph = rawGraph.mapVertices[Int]((vid, data) => if (vid == root) 0 else Math.MaxValue)
       * }}}
       *
       */
      def mapVertices[VD2: ClassTag](map: (VertexId, VD) => VD2)
        (implicit eq: VD =:= VD2 = null): Graph[VD2, ED]
    
      /**
       * Transforms each edge attribute in the graph using the map function.  The map function is not
       * passed the vertex value for the vertices adjacent to the edge.  If vertex values are desired,
       * use `mapTriplets`.
       *
       * @note This graph is not changed and that the new graph has the
       * same structure.  As a consequence the underlying index structures
       * can be reused.
       *
       * @param map the function from an edge object to a new edge value.
       *
       * @tparam ED2 the new edge data type
       *
       * @example This function might be used to initialize edge
       * attributes.
       *
       */
      def mapEdges[ED2: ClassTag](map: Edge[ED] => ED2): Graph[VD, ED2] = {
        mapEdges((pid, iter) => iter.map(map))
      }
    
      /**
       * Transforms each edge attribute using the map function, passing it a whole partition at a
       * time. The map function is given an iterator over edges within a logical partition as well as
       * the partition's ID, and it should return a new iterator over the new values of each edge. The
       * new iterator's elements must correspond one-to-one with the old iterator's elements. If
       * adjacent vertex values are desired, use `mapTriplets`.
       *
       * @note This does not change the structure of the
       * graph or modify the values of this graph.  As a consequence
       * the underlying index structures can be reused.
       *
       * @param map a function that takes a partition id and an iterator
       * over all the edges in the partition, and must return an iterator over
       * the new values for each edge in the order of the input iterator
       *
       * @tparam ED2 the new edge data type
       *
       */
      def mapEdges[ED2: ClassTag](map: (PartitionID, Iterator[Edge[ED]]) => Iterator[ED2])
        : Graph[VD, ED2]
    
      /**
       * Transforms each edge attribute using the map function, passing it the adjacent vertex
       * attributes as well. If adjacent vertex values are not required,
       * consider using `mapEdges` instead.
       *
       * @note This does not change the structure of the
       * graph or modify the values of this graph.  As a consequence
       * the underlying index structures can be reused.
       *
       * @param map the function from an edge object to a new edge value.
       *
       * @tparam ED2 the new edge data type
       *
       * @example This function might be used to initialize edge
       * attributes based on the attributes associated with each vertex.
       * {{{
       * val rawGraph: Graph[Int, Int] = someLoadFunction()
       * val graph = rawGraph.mapTriplets[Int]( edge =>
       *   edge.src.data - edge.dst.data)
       * }}}
       *
       */
      def mapTriplets[ED2: ClassTag](map: EdgeTriplet[VD, ED] => ED2): Graph[VD, ED2] = {
        mapTriplets((pid, iter) => iter.map(map), TripletFields.All)
      }
    
      /**
       * Transforms each edge attribute using the map function, passing it the adjacent vertex
       * attributes as well. If adjacent vertex values are not required,
       * consider using `mapEdges` instead.
       *
       * @note This does not change the structure of the
       * graph or modify the values of this graph.  As a consequence
       * the underlying index structures can be reused.
       *
       * @param map the function from an edge object to a new edge value.
       * @param tripletFields which fields should be included in the edge triplet passed to the map
       *   function. If not all fields are needed, specifying this can improve performance.
       *
       * @tparam ED2 the new edge data type
       *
       * @example This function might be used to initialize edge
       * attributes based on the attributes associated with each vertex.
       * {{{
       * val rawGraph: Graph[Int, Int] = someLoadFunction()
       * val graph = rawGraph.mapTriplets[Int]( edge =>
       *   edge.src.data - edge.dst.data)
       * }}}
       *
       */
      def mapTriplets[ED2: ClassTag](
          map: EdgeTriplet[VD, ED] => ED2,
          tripletFields: TripletFields): Graph[VD, ED2] = {
        mapTriplets((pid, iter) => iter.map(map), tripletFields)
      }
    
      /**
       * Transforms each edge attribute a partition at a time using the map function, passing it the
       * adjacent vertex attributes as well. The map function is given an iterator over edge triplets
       * within a logical partition and should yield a new iterator over the new values of each edge in
       * the order in which they are provided.  If adjacent vertex values are not required, consider
       * using `mapEdges` instead.
       *
       * @note This does not change the structure of the
       * graph or modify the values of this graph.  As a consequence
       * the underlying index structures can be reused.
       *
       * @param map the iterator transform
       * @param tripletFields which fields should be included in the edge triplet passed to the map
       *   function. If not all fields are needed, specifying this can improve performance.
       *
       * @tparam ED2 the new edge data type
       *
       */
      def mapTriplets[ED2: ClassTag](
          map: (PartitionID, Iterator[EdgeTriplet[VD, ED]]) => Iterator[ED2],
          tripletFields: TripletFields): Graph[VD, ED2]
    

    3.4 过滤filter相关的方法

    这里需要注意到一个概念就是底层数据的功用, 结合前面的论文, 调用mask后改变的是vertexedge在索引表里的可见性
    新的图是在老的图上面打了一些标志位, 标注一部分区域不可见来实现的过滤或者说删除, 但是底层的存储还是那些, 和老图公用内存中的内容, 也并不会释放.

      /**
       * Restricts the graph to only the vertices and edges satisfying the predicates. The resulting
       * subgraph satisifies
       *
       * {{{
       * V' = {v : for all v in V where vpred(v)}
       * E' = {(u,v): for all (u,v) in E where epred((u,v)) && vpred(u) && vpred(v)}
       * }}}
       *
       * @param epred the edge predicate, which takes a triplet and
       * evaluates to true if the edge is to remain in the subgraph.  Note
       * that only edges where both vertices satisfy the vertex
       * predicate are considered.
       *
       * @param vpred the vertex predicate, which takes a vertex object and
       * evaluates to true if the vertex is to be included in the subgraph
       *
       * @return the subgraph containing only the vertices and edges that
       * satisfy the predicates
       */
      def subgraph(
          epred: EdgeTriplet[VD, ED] => Boolean = (x => true),
          vpred: (VertexId, VD) => Boolean = ((v, d) => true))
        : Graph[VD, ED]
    
      /**
       * Restricts the graph to only the vertices and edges that are also in `other`, but keeps the
       * attributes from this graph.
       * @param other the graph to project this graph onto
       * @return a graph with vertices and edges that exist in both the current graph and `other`,
       * with vertex and edge data from the current graph
       */
      def mask[VD2: ClassTag, ED2: ClassTag](other: Graph[VD2, ED2]): Graph[VD, ED]
    

    3.5 Scatter / Join 相关的方法

      /**
       * Joins the vertices with entries in the `table` RDD and merges the results using `mapFunc`.
       * The input table should contain at most one entry for each vertex.  If no entry in `other` is
       * provided for a particular vertex in the graph, the map function receives `None`.
       *
       * @tparam U the type of entry in the table of updates
       * @tparam VD2 the new vertex value type
       *
       * @param other the table to join with the vertices in the graph.
       *              The table should contain at most one entry for each vertex.
       * @param mapFunc the function used to compute the new vertex values.
       *                The map function is invoked for all vertices, even those
       *                that do not have a corresponding entry in the table.
       *
       * @example This function is used to update the vertices with new values based on external data.
       *          For example we could add the out-degree to each vertex record:
       *
       * {{{
       * val rawGraph: Graph[_, _] = Graph.textFile("webgraph")
       * val outDeg: RDD[(VertexId, Int)] = rawGraph.outDegrees
       * val graph = rawGraph.outerJoinVertices(outDeg) {
       *   (vid, data, optDeg) => optDeg.getOrElse(0)
       * }
       * }}}
       */
      def outerJoinVertices[U: ClassTag, VD2: ClassTag](other: RDD[(VertexId, U)])
          (mapFunc: (VertexId, VD, Option[U]) => VD2)(implicit eq: VD =:= VD2 = null)
        : Graph[VD2, ED]
    

    3.6 Gather / GroupBy 相关的方法

    
      /**
       * Aggregates values from the neighboring edges and vertices of each vertex. The user-supplied
       * `sendMsg` function is invoked on each edge of the graph, generating 0 or more messages to be
       * sent to either vertex in the edge. The `mergeMsg` function is then used to combine all messages
       * destined to the same vertex.
       *
       * @tparam A the type of message to be sent to each vertex
       *
       * @param sendMsg runs on each edge, sending messages to neighboring vertices using the
       *   [[EdgeContext]].
       * @param mergeMsg used to combine messages from `sendMsg` destined to the same vertex. This
       *   combiner should be commutative and associative.
       * @param tripletFields which fields should be included in the [[EdgeContext]] passed to the
       *   `sendMsg` function. If not all fields are needed, specifying this can improve performance.
       *
       * @example We can use this function to compute the in-degree of each
       * vertex
       * {{{
       * val rawGraph: Graph[_, _] = Graph.textFile("twittergraph")
       * val inDeg: RDD[(VertexId, Int)] =
       *   rawGraph.aggregateMessages[Int](ctx => ctx.sendToDst(1), _ + _)
       * }}}
       *
       * @note By expressing computation at the edge level we achieve
       * maximum parallelism.  This is one of the core functions in the
       * Graph API in that enables neighborhood level computation. For
       * example this function can be used to count neighbors satisfying a
       * predicate or implement PageRank.
       *
       */
      def aggregateMessages[A: ClassTag](
          sendMsg: EdgeContext[VD, ED, A] => Unit,
          mergeMsg: (A, A) => A,
          tripletFields: TripletFields = TripletFields.All)
        : VertexRDD[A] = {
        aggregateMessagesWithActiveSet(sendMsg, mergeMsg, tripletFields, None)
      }
    

    相关文章

      网友评论

          本文标题:6. GraphX中 Graph抽象的结构

          本文链接:https://www.haomeiwen.com/subject/gyouhqtx.html