美文网首页
scanpy | 基本单细胞数据分析流程

scanpy | 基本单细胞数据分析流程

作者: 尘世中一个迷途小书僮 | 来源:发表于2023-07-21 15:38 被阅读0次

    scanpy | Preprocessing and clustering 3k PBMCs

    本文记录使用scanpy处理3k PBMCs scRNA-seq数据的流程。

    环境配置

    创建一个虚拟环境以方便管理相关的库。

    conda create --name pysc python=3.9
    conda activate pysc
    conda install -c anaconda ipykernel
    python -m ipykernel install --user --name pysc
    
    pip3 install scanpy
    pip3 install pandas
    pip3 install loompy
    
    

    本文使用PBMCs 3k数据可以在该网址下载(http://cf.10xgenomics.com/samples/cell-exp/1.1.0/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz).

    下载后,将文件解压至当前的data目录下.

    # !mkdir data
    # !wget http://cf.10xgenomics.com/samples/cell-exp/1.1.0/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz -O data/pbmc3k_filtered_gene_bc_matrices.tar.gz
    # !cd data; tar -xzf pbmc3k_filtered_gene_bc_matrices.tar.gz
    # !mkdir output
    
    import numpy as np
    import pandas as pd
    import scanpy as sc
    
    sc.settings.verbosity = 3             # verbosity: errors (0), warnings (1), info (2), hints (3)
    sc.logging.print_header()
    sc.settings.set_figure_params(dpi=80, facecolor='white')
    
    e:\miniconda3\envs\pysc\lib\site-packages\umap\distances.py:1063: NumbaDeprecationWarning: �[1mThe 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.�[0m
      @numba.jit()
    e:\miniconda3\envs\pysc\lib\site-packages\umap\distances.py:1071: NumbaDeprecationWarning: �[1mThe 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.�[0m
      @numba.jit()
    e:\miniconda3\envs\pysc\lib\site-packages\umap\distances.py:1086: NumbaDeprecationWarning: �[1mThe 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.�[0m
      @numba.jit()
    e:\miniconda3\envs\pysc\lib\site-packages\tqdm\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
      from .autonotebook import tqdm as notebook_tqdm
    
    
    scanpy==1.9.3 anndata==0.9.1 umap==0.5.3 numpy==1.24.4 scipy==1.11.1 pandas==2.0.3 scikit-learn==1.3.0 statsmodels==0.14.0 python-igraph==0.10.6 pynndescent==0.5.10
    
    
    e:\miniconda3\envs\pysc\lib\site-packages\umap\umap_.py:660: NumbaDeprecationWarning: �[1mThe 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.�[0m
      @numba.jit()
    
    results_file='output/pbmc3k.h5ad' # the file that will store the analysis results
    
    adata = sc.read_10x_mtx('data/filtered_gene_bc_matrices/hg19/',  # the directory with the `.mtx` file
                           var_names='gene_symbols', # use gene symbols for the variable names (variables-axis index)
                            cache=True # write a cache file for faster subsequent reading
                           )
    
    ... reading from cache file cache\data-filtered_gene_bc_matrices-hg19-matrix.h5ad
    
    # remove duplicated symbols
    adata.var_names_make_unique() # this is unnecessary if using `var_names='gene_ids'` in `sc.read_10x_mtx`
    adata
    
    AnnData object with n_obs × n_vars = 2700 × 32738
        var: 'gene_ids'
    

    我们读入的数据为AnnData格式。

    AnnData是python中处理带注释的数据的一种格式,读入的数据并不直接读入内存当中,而是创建与磁盘数据的链接来进行处理。对于单细胞测序数据而言,一般与细胞相关数据存储于.obs,而与feature相关数据存储于.var

    anndata_schema

    Preprocessing

    scanpy包提供的api有几个主要的modules,包括:

    • preprocessing: scanpy.pp, such as pp.calculate_qc_metrics, pp.filter_cells, pp.filter_genes, ...;
    • tools: scanpy.tl, such as tl.pca, tl.tsne, tl.umap, ...;
    • plots: scanpy.pl, such as pl.scatter, pl.highest_expr_genes, pl.umap, ...

    https://scanpy.readthedocs.io/en/stable/api.html

    接下来,我们先使用scanpy包进行数据预处理,展示高表达基因在各个细胞中的counts。

    sc.pl.highest_expr_genes(adata, n_top=20)
    
    normalizing counts per cell
        finished (0:00:00)
    

    执行简单的过滤操作。保留至少有200个基因表达的细胞,至少有3个细胞表达的基因。

    sc.pp.filter_cells(adata, min_genes=200)
    sc.pp.filter_genes(adata, min_cells=3)
    
    filtered out 19024 genes that are detected in less than 3 cells
    

    然后,再根据基因的counts和线粒体基因表达进行进一步过滤。

    首先,计算线粒体基因比例.

    adata.var 存的是feature-level相关的信息,adata.obs 存的是cell-level的信息

    adata.var['mt'] = adata.var_names.str.startswith("MT-") 
    sc.pp.calculate_qc_metrics(adata, qc_vars=['mt'], percent_top=None, log1p=False, inplace=True)
    adata.obs['pct_counts_mt']
    
    AAACATACAACCAC-1    3.017776
    AAACATTGAGCTAC-1    3.793596
    AAACATTGATCAGC-1    0.889736
    AAACCGTGCTTCCG-1    1.743085
    AAACCGTGTATGCG-1    1.224490
                          ...   
    TTTCGAACTCTCAT-1    2.110436
    TTTCTACTGAGGCA-1    0.929422
    TTTCTACTTCCTCG-1    2.197150
    TTTGCATGAGAGGC-1    2.054795
    TTTGCATGCCTCAC-1    0.806452
    Name: pct_counts_mt, Length: 2700, dtype: float32
    
    sc.pl.violin(adata, ['n_genes_by_counts', 'total_counts', 'pct_counts_mt'], jitter=0.4, multi_panel=True)
    
    e:\miniconda3\envs\pysc\lib\site-packages\seaborn\axisgrid.py:118: UserWarning: The figure layout has changed to tight
      self._figure.tight_layout(*args, **kwargs)
    
    output_12_1.png
    sc.pl.scatter(adata, x='total_counts', y='pct_counts_mt')
    sc.pl.scatter(adata, x='total_counts', y='n_genes_by_counts')
    
    output_13_0.png output_13_1.png

    过滤基因数和线粒体基因占比过高的细胞

    通过切片的方法过滤

    adata = adata[adata.obs.n_genes_by_counts < 2500, :]
    adata = adata[adata.obs.pct_counts_mt < 5, :]
    adata
    
    View of AnnData object with n_obs × n_vars = 2638 × 13714
        obs: 'n_genes', 'n_genes_by_counts', 'total_counts', 'total_counts_mt', 'pct_counts_mt'
        var: 'gene_ids', 'n_cells', 'mt', 'n_cells_by_counts', 'mean_counts', 'pct_dropout_by_counts', 'total_counts'
    

    接下来,我们对read counts进行文库大小校正,并进行log转换。

    随后,根据normalized expression鉴定highly-variable genes以供后续PCA等分析使用。

    # make a copy of raw count
    adata.layers['counts'] = adata.X.copy()
    
    # Total-count normalization 
    sc.pp.normalize_total(adata, target_sum=1e4)
    
    # log transformation
    sc.pp.log1p(adata)
    
    # store normalized data
    adata.layers['data'] = adata.X.copy()
    
    normalizing counts per cell
        finished (0:00:00)
    
    
    e:\miniconda3\envs\pysc\lib\site-packages\scanpy\preprocessing\_normalization.py:170: UserWarning: Received a view of an AnnData. Making a copy.
      view_to_actual(adata)
    
    # Identify highly-variable genes
    sc.pp.highly_variable_genes(adata, min_mean=0.0125, max_mean=3, min_disp=0.5)
    sc.pl.highly_variable_genes(adata)
    
    extracting highly variable genes
        finished (0:00:00)
    --> added
        'highly_variable', boolean vector (adata.var)
        'means', float vector (adata.var)
        'dispersions', float vector (adata.var)
        'dispersions_norm', float vector (adata.var)
    
    output_18_1.png

    鉴定的基因存储在adata.var.highly_variable中,后续可被PCA、clustering和UMAP/tSNE等函数识别,所以不需要再对数据进行过滤。

    adata.var.highly_variable
    
    AL627309.1       False
    AP006222.2       False
    RP11-206L10.2    False
    RP11-206L10.9    False
    LINC00115        False
                     ...  
    AC145212.1       False
    AL592183.1       False
    AL354822.1       False
    PNRC2-1          False
    SRSF10-1         False
    Name: highly_variable, Length: 13714, dtype: bool
    

    这里将adata.raw设置为校正后的数据,以供后续差异分析和可视化使用。相当于是把默认的表达矩阵替换为校正过的。可以通过.raw.to_adata()再替换为原始数据。

    adata.raw = adata
    print(adata.raw)
    
    Raw AnnData with n_obs × n_vars = 2638 × 13714
        var: 'gene_ids', 'n_cells', 'mt', 'n_cells_by_counts', 'mean_counts', 'pct_dropout_by_counts', 'total_counts', 'highly_variable', 'means', 'dispersions', 'dispersions_norm'
    
    # filtering hvg
    adata = adata[:, adata.var.highly_variable]
    
    # regress out effects of total counts per cell and the percentage of mt genes expressed
    sc.pp.regress_out(adata, ['total_counts', 'pct_counts_mt'])
    
    # cale each gene to unit variance. clip values exceeding standard deviation 10.
    sc.pp.scale(adata, max_value=10)
    
    # store scaled data
    adata.layers['scaled'] = adata.X.copy()
    
    regressing out ['total_counts', 'pct_counts_mt']
        sparse input is densified and may lead to high memory use
        finished (0:00:03)
    
    # PCA
    sc.tl.pca(adata, svd_solver='arpack')
    
    # elbow plot
    sc.pl.pca_variance_ratio(adata, log=True)
    
    computing PCA
        on highly variable genes
        with n_comps=50
        finished (0:00:00)
    
    output_24_1.png
    adata
    
    AnnData object with n_obs × n_vars = 2638 × 1838
        obs: 'n_genes', 'n_genes_by_counts', 'total_counts', 'total_counts_mt', 'pct_counts_mt'
        var: 'gene_ids', 'n_cells', 'mt', 'n_cells_by_counts', 'mean_counts', 'pct_dropout_by_counts', 'total_counts', 'highly_variable', 'means', 'dispersions', 'dispersions_norm', 'mean', 'std'
        uns: 'log1p', 'hvg', 'pca'
        obsm: 'X_pca'
        varm: 'PCs'
    

    Computing the neighborhood graph

    接下来,我们基于PCA计算细胞的邻接图

    sc.pp.neighbors(adata, n_neighbors=10, n_pcs=40)
    
    computing neighbors
        using 'X_pca' with n_pcs = 40
        finished: added to `.uns['neighbors']`
        `.obsp['distances']`, distances for each pair of neighbors
        `.obsp['connectivities']`, weighted adjacency matrix (0:00:02)
    

    Embedding the neighborhood graph

    使用UMAP可视化

    sc.tl.umap(adata)
    sc.pl.umap(adata, color=['CST3','NKG7', 'PPBP'])
    
    computing UMAP
        finished: added
        'X_umap', UMAP coordinates (adata.obsm) (0:00:03)
    
    output_29_1.png

    pl.umap默认使用adata.raw中的值作图,由于上面我们将其替换为了normalized后的值。如果想用scaled values作图,可以使用参数use_raw=False

    sc.pl.umap(adata, color=['CST3','NKG7', 'PPBP'], use_raw=False)
    
    output_31_0.png

    Clustering the neighborhood graph

    使用Leiden graph-clustering进行聚类

    sc.tl.leiden(adata, resolution=1)
    sc.pl.umap(adata, color=['leiden'])
    
    running Leiden clustering
        finished: found 8 clusters and added
        'leiden', the cluster labels (adata.obs, categorical) (0:00:00)
    
    
    e:\miniconda3\envs\pysc\lib\site-packages\scanpy\plotting\_tools\scatterplots.py:392: UserWarning: No data for colormapping provided via 'c'. Parameters 'cmap' will be ignored
      cax = scatter(
    
    output_33_2.png
    # save the result
    adata.write(results_file)
    

    Finding marker genes

    Wilcoxon rank-sum test to identify markers

    # compare each group with the rest of cell
    sc.tl.rank_genes_groups(adata, 'leiden', method='wilcoxon')
    sc.pl.rank_genes_groups(adata, n_genes=25, sharey=False) # sharey: Controls if the y-axis of each panels should be shared. 
    
    ranking genes
        finished: added to `.uns['rank_genes_groups']`
        'names', sorted np.recarray to be indexed by group ids
        'scores', sorted np.recarray to be indexed by group ids
        'logfoldchanges', sorted np.recarray to be indexed by group ids
        'pvals', sorted np.recarray to be indexed by group ids
        'pvals_adj', sorted np.recarray to be indexed by group ids (0:00:01)
    
    output_36_1.png
    adata.write(results_file)
    
    # marker gene
    marker_genes = ['IL7R', 'CD79A', 'MS4A1', 'CD8A', 'CD8B', 'LYZ', 'CD14',
                    'LGALS3', 'S100A8', 'GNLY', 'NKG7', 'KLRB1',
                    'FCGR3A', 'MS4A7', 'FCER1A', 'CST3', 'PPBP']
    
    # top 5 ranked genes per cluster
    pd.DataFrame(adata.uns['rank_genes_groups']['names']).head(5)
    
    image.png
    result = adata.uns['rank_genes_groups']
    groups = result['names'].dtype.names
    pd.DataFrame(
        {group + '_' + key[:1] : result[key][group] # create new dictionary
        for group in groups for key in ['names', 'pvals']}  
    ).head(5)
    
    image.png
    # compare between groups
    sc.tl.rank_genes_groups(adata, 'leiden', groups=['0'], reference='1', method='wilcoxon')
    sc.pl.rank_genes_groups(adata, groups=['0'], n_genes=20)
    
    ranking genes
        finished: added to `.uns['rank_genes_groups']`
        'names', sorted np.recarray to be indexed by group ids
        'scores', sorted np.recarray to be indexed by group ids
        'logfoldchanges', sorted np.recarray to be indexed by group ids
        'pvals', sorted np.recarray to be indexed by group ids
        'pvals_adj', sorted np.recarray to be indexed by group ids (0:00:00)
    
    output_40_1.png
    # 0 vs. 1
    sc.pl.rank_genes_groups_violin(adata, groups='0', n_genes=8)
    
    e:\miniconda3\envs\pysc\lib\site-packages\seaborn\categorical.py:166: FutureWarning: Setting a gradient palette using color= is deprecated and will be removed in version 0.13. Set `palette='dark:black'` for same effect.
      warnings.warn(msg, FutureWarning)
    
    output_41_1.png
    # Reload the object with the computed differential expression (i.e. DE via a comparison with the rest of the groups):
    adata = sc.read(results_file)
    sc.pl.rank_genes_groups_violin(adata, groups='0', n_genes=8)
    
    e:\miniconda3\envs\pysc\lib\site-packages\seaborn\categorical.py:166: FutureWarning: Setting a gradient palette using color= is deprecated and will be removed in version 0.13. Set `palette='dark:black'` for same effect.
      warnings.warn(msg, FutureWarning)
    
    output_42_1.png
    # plot expression across clusters
    sc.pl.violin(adata, ['CST3', 'NKG7', 'PPBP'], groupby='leiden')
    
    output_43_0.png
    # rename cluster based on cell types
    new_cluster_names = [
        'CD4 T', 'CD14 Monocytes',
        'B', 'CD8 T',
        'NK', 'FCGR3A Monocytes',
        'Dendritic', 'Megakaryocytes']
    adata.rename_categories('leiden', new_cluster_names)
    sc.pl.umap(adata, color='leiden', legend_loc='on data', title='', frameon=False, save='.pdf')
    
    WARNING: saving figure to file figures\umap.pdf
    
    
    e:\miniconda3\envs\pysc\lib\site-packages\scanpy\plotting\_tools\scatterplots.py:392: UserWarning: No data for colormapping provided via 'c'. Parameters 'cmap' will be ignored
      cax = scatter(
    
    output_44_2.png
    # dotplot for marker genes
    sc.pl.dotplot(adata, marker_genes, groupby='leiden')
    
    e:\miniconda3\envs\pysc\lib\site-packages\scanpy\plotting\_dotplot.py:749: UserWarning: No data for colormapping provided via 'c'. Parameters 'cmap', 'norm' will be ignored
      dot_ax.scatter(x, y, **kwds)
    
    output_45_1.png
    # violin plot
    sc.pl.stacked_violin(adata, marker_genes, groupby='leiden')
    
    output_46_0.png
    adata
    
    AnnData object with n_obs × n_vars = 2638 × 1838
        obs: 'n_genes', 'n_genes_by_counts', 'total_counts', 'total_counts_mt', 'pct_counts_mt', 'leiden'
        var: 'gene_ids', 'n_cells', 'mt', 'n_cells_by_counts', 'mean_counts', 'pct_dropout_by_counts', 'total_counts', 'highly_variable', 'means', 'dispersions', 'dispersions_norm', 'mean', 'std'
        uns: 'hvg', 'leiden', 'leiden_colors', 'log1p', 'neighbors', 'pca', 'rank_genes_groups', 'umap'
        obsm: 'X_pca', 'X_umap'
        varm: 'PCs'
        obsp: 'connectivities', 'distances'
    

    总结

    scanpy中scRNA-seq分析流程包括:

    # read in data
    adata = sc.read_10x_mtx('data/filtered_gene_bc_matrices/hg19/', cache=True)             
    # normalization
    sc.pp.normalize_total(adata, target_sum=1e4)
    sc.pp.log1p(adata)
    # highly variable genes
    sc.pp.highly_variable_genes(adata, min_mean=0.0125, max_mean=3, min_disp=0.5)
    # scale
    sc.pp.scale(adata, max_value=10)
    # PCA
    sc.tl.pca(adata, svd_solver='arpack')
    # find neighbors
    sc.pp.neighbors(adata, n_neighbors=10, n_pcs=40)
    # clustering
    sc.tl.leiden(adata)
    # UMAP
    sc.tl.umap(adata)
    sc.pl.umap(adata, color=['leiden'])
    # find markers
    sc.tl.rank_genes_groups(adata, 'leiden', method='wilcoxon')
    

    由于后续需要在Geneformer中使用该数据,这里我将行名替换为ensembl id,并在细胞注释.obs中增加一列cell_type指定细胞类型和organ_major指定组织类型。同时,替换默认表达矩阵为原始counts。随后,以loom格式存储。

    # make dataset suitable for Geneformer
    # convert row attributes to Ensembl IDs
    adata.var['gene_name'] = adata.var_names
    adata.var_names = adata.var['gene_ids']
    adata.var.rename(columns={"gene_ids": "ensembl_id"}, inplace=True)
    adata.var
    
    image.png
    # add cell_type and organ_major columns for cell
    adata.obs['cell_type'] = adata.obs['leiden']
    adata.obs['organ_major'] = 'immune'
    adata.obs.rename(columns={"total_counts": "n_counts"}, inplace=True)
    adata.obs
    
    image.png
    # replace count matrix with raw counts
    adata.X = adata.layers['counts']
    adata.X.toarray()[10:15,0:3]
    
    array([[0., 1., 0.],
           [0., 0., 0.],
           [0., 0., 0.],
           [0., 0., 0.],
           [0., 0., 0.]], dtype=float32)
    
    # save in h5ad
    adata.write(results_file)
    # save in loom
    adata.write_loom("output/pbmc3k.loom")
    
    The loom file will lack these fields:
    {'X_umap', 'PCs', 'X_pca'}
    Use write_obsm_varm=True to export multi-dimensional annotations
    e:\miniconda3\envs\pysc\lib\site-packages\loompy\bus_file.py:68: NumbaDeprecationWarning: �[1mThe 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.�[0m
      def twobit_to_dna(twobit: int, size: int) -> str:
    e:\miniconda3\envs\pysc\lib\site-packages\loompy\bus_file.py:85: NumbaDeprecationWarning: �[1mThe 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.�[0m
      def dna_to_twobit(dna: str) -> int:
    e:\miniconda3\envs\pysc\lib\site-packages\loompy\bus_file.py:102: NumbaDeprecationWarning: �[1mThe 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.�[0m
      def twobit_1hamming(twobit: int, size: int) -> List[int]:
    

    Ref:

    https://scanpy-tutorials.readthedocs.io/en/latest/pbmc3k.html#Clustering-3K-PBMCs

    https://anndata.readthedocs.io/en/latest/

    相关文章

      网友评论

          本文标题:scanpy | 基本单细胞数据分析流程

          本文链接:https://www.haomeiwen.com/subject/haetpdtx.html