美文网首页C语言基础学习
《C语言37—排序算法》

《C语言37—排序算法》

作者: 竹予青青 | 来源:发表于2019-04-10 16:06 被阅读43次

    2019年4月10日星期三 阴

    (声明:理论知识部分来自菜鸟教程网站!)
    今日学习内容:

    38、C 排序算法

    (1)冒泡排序

    冒泡排序(英语:Bubble Sort)是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序(如从大到小、首字母从A到Z)错误就把他们交换过来。

    过程演示:


    冒泡排序

    实例

    #include <stdio.h>
    void bubble_sort(int arr[], int len) {
        int i, j, temp;
        for (i = 0; i < len - 1; i++)
            for (j = 0; j < len - 1 - i; j++)
                if (arr[j] > arr[j + 1]) {
                    temp = arr[j];
                    arr[j] = arr[j + 1];
                    arr[j + 1] = temp;
                }
    }
    int main() {
        int arr[] = { 22, 34, 3, 32, 82, 55, 89, 50, 37, 5, 64, 35, 9, 70 };
        int len = (int) sizeof(arr) / sizeof(*arr);
        bubble_sort(arr, len);
        int i;
        for (i = 0; i < len; i++)
            printf("%d ", arr[i]);
        return 0;
    }
    
    (2)选择排序

    选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理如下。首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

    过程演示:


    选择排序1
    选择排序2

    实例

    void swap(int *a,int *b) //交換兩個變數
    {
        int temp = *a;
        *a = *b;
        *b = temp;
    }
    void selection_sort(int arr[], int len) 
    {
        int i,j;
     
        for (i = 0 ; i < len - 1 ; i++) 
        {
            int min = i;
            for (j = i + 1; j < len; j++)     //走訪未排序的元素
                if (arr[j] < arr[min])    //找到目前最小值
                    min = j;    //紀錄最小值
               swap(&arr[min], &arr[i]);    //做交換
        }
    }
    
    (3)插入排序

    插入排序(英语:Insertion Sort)是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到 {\displaystyle O(1)} {\displaystyle O(1)}的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。

    过程演示:


    插入排序

    实例

    void insertion_sort(int arr[], int len){
        int i,j,temp;
        for (i=1;i<len;i++){
                temp = arr[i];
                for (j=i;j>0 && arr[j-1]>temp;j--)
                        arr[j] = arr[j-1];
                arr[j] = temp;
        }
    }
    
    (4)希尔排序

    希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本。希尔排序是非稳定排序算法。

    希尔排序是基于插入排序的以下两点性质而提出改进方法的:

    插入排序在对几乎已经排好序的数据操作时,效率高,即可以达到线性排序的效率
    但插入排序一般来说是低效的,因为插入排序每次只能将数据移动一位
    过程演示:


    希尔排序

    实例

    void shell_sort(int arr[], int len) {
        int gap, i, j;
        int temp;
        for (gap = len >> 1; gap > 0; gap = gap >>= 1)
            for (i = gap; i < len; i++) {
                temp = arr[i];
                for (j = i - gap; j >= 0 && arr[j] > temp; j -= gap)
                    arr[j + gap] = arr[j];
                arr[j + gap] = temp;
            }
    }
    
    (5)归并排序

    把数据分为两段,从两段中逐个选最小的元素移入新数据段的末尾。

    可从上到下或从下到上进行。

    过程演示:


    归并排序1
    归并排序2

    迭代法

    int min(int x, int y) {
        return x < y ? x : y;
    }
    void merge_sort(int arr[], int len) {
        int* a = arr;
        int* b = (int*) malloc(len * sizeof(int));
        int seg, start;
        for (seg = 1; seg < len; seg += seg) {
            for (start = 0; start < len; start += seg + seg) {
                int low = start, mid = min(start + seg, len), high = min(start + seg + seg, len);
                int k = low;
                int start1 = low, end1 = mid;
                int start2 = mid, end2 = high;
                while (start1 < end1 && start2 < end2)
                    b[k++] = a[start1] < a[start2] ? a[start1++] : a[start2++];
                while (start1 < end1)
                    b[k++] = a[start1++];
                while (start2 < end2)
                    b[k++] = a[start2++];
            }
            int* temp = a;
            a = b;
            b = temp;
        }
        if (a != arr) {
            int i;
            for (i = 0; i < len; i++)
                b[i] = a[i];
            b = a;
        }
        free(b);
    }
    

    递归法

    void merge_sort_recursive(int arr[], int reg[], int start, int end) {
        if (start >= end)
            return;
        int len = end - start, mid = (len >> 1) + start;
        int start1 = start, end1 = mid;
        int start2 = mid + 1, end2 = end;
        merge_sort_recursive(arr, reg, start1, end1);
        merge_sort_recursive(arr, reg, start2, end2);
        int k = start;
        while (start1 <= end1 && start2 <= end2)
            reg[k++] = arr[start1] < arr[start2] ? arr[start1++] : arr[start2++];
        while (start1 <= end1)
            reg[k++] = arr[start1++];
        while (start2 <= end2)
            reg[k++] = arr[start2++];
        for (k = start; k <= end; k++)
            arr[k] = reg[k];
    }
    void merge_sort(int arr[], const int len) {
        int reg[len];
        merge_sort_recursive(arr, reg, 0, len - 1);
    }
    
    
    (6)快速排序

    在区间中随机挑选一个元素作基准,将小于基准的元素放在基准之前,大于基准的元素放在基准之后,再分别对小数区与大数区进行排序。

    过程演示:


    《C语言37—排序算法》

    迭代法

    typedef struct _Range {
        int start, end;
    } Range;
    Range new_Range(int s, int e) {
        Range r;
        r.start = s;
        r.end = e;
        return r;
    }
    void swap(int *x, int *y) {
        int t = *x;
        *x = *y;
        *y = t;
    }
    void quick_sort(int arr[], const int len) {
        if (len <= 0)
            return; // 避免len等於負值時引發段錯誤(Segment Fault)
        // r[]模擬列表,p為數量,r[p++]為push,r[--p]為pop且取得元素
        Range r[len];
        int p = 0;
        r[p++] = new_Range(0, len - 1);
        while (p) {
            Range range = r[--p];
            if (range.start >= range.end)
                continue;
            int mid = arr[(range.start + range.end) / 2]; // 選取中間點為基準點
            int left = range.start, right = range.end;
            do
            {
                while (arr[left] < mid) ++left;   // 檢測基準點左側是否符合要求
                while (arr[right] > mid) --right; //檢測基準點右側是否符合要求
     
                if (left <= right)
                {
                    swap(&arr[left],&arr[right]);
                    left++;right--;               // 移動指針以繼續
                }
            } while (left <= right);
     
            if (range.start < right) r[p++] = new_Range(range.start, right);
            if (range.end > left) r[p++] = new_Range(left, range.end);
        }
    }
    

    递归法

    void swap(int *x, int *y) {
        int t = *x;
        *x = *y;
        *y = t;
    }
    void quick_sort_recursive(int arr[], int start, int end) {
        if (start >= end)
            return;
        int mid = arr[end];
        int left = start, right = end - 1;
        while (left < right) {
            while (arr[left] < mid && left < right)
                left++;
            while (arr[right] >= mid && left < right)
                right--;
            swap(&arr[left], &arr[right]);
        }
        if (arr[left] >= arr[end])
            swap(&arr[left], &arr[end]);
        else
            left++;
        if (left)
            quick_sort_recursive(arr, start, left - 1);
        quick_sort_recursive(arr, left + 1, end);
    }
    void quick_sort(int arr[], int len) {
        quick_sort_recursive(arr, 0, len - 1);
    }
    

    Weif
    2019年4月10日

    相关文章

      网友评论

        本文标题:《C语言37—排序算法》

        本文链接:https://www.haomeiwen.com/subject/hdpbiqtx.html