题目一: 购物单
小明刚刚找到工作,老板人很好,只是老板夫人很爱购物。老板忙的时候经常让小明帮忙到商场代为购物。小明很厌烦,但又不好推辞。
这不,XX大促销又来了!老板夫人开出了长长的购物单,都是有打折优惠的。
小明也有个怪癖,不到万不得已,从不刷卡,直接现金搞定。
现在小明很心烦,请你帮他计算一下,需要从取款机上取多少现金,才能搞定这次购物。
取款机只能提供100元面额的纸币。小明想尽可能少取些现金,够用就行了。
你的任务是计算出,小明最少需要取多少现金。
以下是让人头疼的购物单,为了保护隐私,物品名称被隐藏了。
--------------------
**** 180.90 88折
**** 10.25 65折
**** 56.14 9折
**** 104.65 9折
**** 100.30 88折
**** 297.15 半价
**** 26.75 65折
**** 130.62 半价
**** 240.28 58折
**** 270.62 8折
**** 115.87 88折
**** 247.34 95折
**** 73.21 9折
**** 101.00 半价
**** 79.54 半价
**** 278.44 7折
**** 199.26 半价
**** 12.97 9折
**** 166.30 78折
**** 125.50 58折
**** 84.98 9折
**** 113.35 68折
**** 166.57 半价
**** 42.56 9折
**** 81.90 95折
**** 131.78 8折
**** 255.89 78折
**** 109.17 9折
**** 146.69 68折
**** 139.33 65折
**** 141.16 78折
**** 154.74 8折
**** 59.42 8折
**** 85.44 68折
**** 293.70 88折
**** 261.79 65折
**** 11.30 88折
**** 268.27 58折
**** 128.29 88折
**** 251.03 8折
**** 208.39 75折
**** 128.88 75折
**** 62.06 9折
**** 225.87 75折
**** 12.89 75折
**** 34.28 75折
**** 62.16 58折
**** 129.12 半价
**** 218.37 半价
**** 289.69 8折
--------------------
需要说明的是,88折指的是按标价的88%计算,而8折是按80%计算,余者类推。
特别地,半价是按50%计算。
请提交小明要从取款机上提取的金额,单位是元。
答案是一个整数,类似4300的样子,结尾必然是00,不要填写任何多余的内容。
思路:处理下数据导入Excel
image.pngimage.png
答案:5200
题目二:等差素数列
2,3,5,7,11,13,....是素数序列。
类似:7,37,67,97,127,157 这样完全由素数组成的等差数列,叫等差素数数列。
上边的数列公差为30,长度为6。
2004年,格林与华人陶哲轩合作证明了:存在任意长度的素数等差数列。
这是数论领域一项惊人的成果!
有这一理论为基础,请你借助手中的计算机,满怀信心地搜索:
长度为10的等差素数列,其公差最小值是多少?
注意:需要提交的是一个整数,不要填写任何多余的内容和说明文字。
解题思路:直接暴力枚举即可
#include<cmath>
#include<iostream>
using namespace std;
int isPrime(int a)//判断a是否为素数
{
for(int i=2;i<=sqrt(a);i++)
{
if(a%i==0)
{
return 0;
}
}
return 1;
}
int main()
{
int i,k;
for(k=1;k<=500;k++) //对公差进行枚举
{
for(i=2;i<=10000;i++)
{
if(isPrime(i))//枚举所有的素数2,3,5,7,9...
{
//判断该素数之后公差为k的后9个数是否也是素数
if(isPrime(i+k)&&isPrime(i+2*k)&&isPrime(i+3*k)&&isPrime(i+4*k)&&isPrime(i+5*k)&&isPrime(i+6*k)&&isPrime(i+7*k)&&isPrime(i+8*k)&&isPrime(i+9*k))
{
cout<<k;//如果后9个数都为素数输出该公差k
}
}
}
}
return 0;
}
题目三:承压计算
X星球的高科技实验室中整齐地堆放着某批珍贵金属原料。
每块金属原料的外形、尺寸完全一致,但重量不同。
金属材料被严格地堆放成金字塔形。
image.png
其中的数字代表金属块的重量(计量单位较大)。
最下一层的X代表30台极高精度的电子秤。
假设每块原料的重量都十分精确地平均落在下方的两个金属块上,
最后,所有的金属块的重量都严格精确地平分落在最底层的电子秤上。
电子秤的计量单位很小,所以显示的数字很大。
工作人员发现,其中读数最小的电子秤的示数为:2086458231
请你推算出:读数最大的电子秤的示数为多少?
注意:需要提交的是一个整数,不要填写任何多余的内容。
题目四:方格分割
6x6的方格,沿着格子的边线剪开成两部分。
要求这两部分的形状完全相同。
如图:p1.png, p2.png, p3.png 就是可行的分割法。
image.png
试计算:
包括这3种分法在内,一共有多少种不同的分割方法。
注意:旋转对称的属于同一种分割法。
请提交该整数,不要填写任何多余的内容或说明文字。
题目五:取数位
求1个整数的第k位数字有很多种方法。
以下的方法就是一种。
// 求x用10进制表示时的数位长度
int len(int x){
if(x<10) return 1;
return len(x/10)+1;
}
// 取x的第k位数字
int f(int x, int k){
if(len(x)-k==0) return x%10;
return _____________________; //填空
}
int main()
{
int x = 23574;
printf("%d\n", f(x,3));
return 0;
}
对于题目中的测试数据,应该打印5。
请仔细分析源码,并补充划线部分所缺少的代码。
注意:只提交缺失的代码,不要填写任何已有内容或说明性的文字。
解题思路:这道题一看就是要让我们来补充递归调用的代码,分析f函数,如果x用10进制表示时的数位长度和所求的一样长,就返回个位数,如果不一样长,那么应该截取到一样长,要么len(x)减小,要么k增大,但是k不能再增大了,所以len(x)减小,即x减小,也就是x/10。
答案:f(x/10,k)
网友评论