前面的章节我们使用了shader中的一个光源,我们给他定义了位置,因此可以计算出光线照射在每个点的方向:
我使用了另外一个正常材质的模型:
image.png
我把光源设置在上方,可以发现飞龙上部分是光亮的而背面是黑暗的,这表面上没问题。但是和现实其实不相符,因为现实中这种点光源是会随着距离的增加而衰减。一个模型看不出问题,模型多了就会发现每个地方强度的是一样的。因此我们来讨论光源的问题。
定向光:
定向光顾名思义每一束光的方向应该是相同的,不会向点光源那样成放射状。
image.png
我们会认为他是太阳,因为太阳光在同一个城市(排除乌云影响)每个地方的强度几乎相同,且在天空中的强度和在地面的强度也几乎是相同的(如果排除大气层的影响),因为距离遥远,我们认为太阳在无穷远处,正因为距离遥远阳光照射在地球上,我们也认为每一束光大致是平行的。有了这个特点,我们把他抽象到定向光上。
定向光的特点:
因此定向光就有了这样的特点,它没有光源位置(无穷远,我们不关心他的位置),定向光处处方向相同,且不会衰减。
于是我们以后就可以把光源向材质那样打包到结构体同,用统一(一致)变量来发送。
struct Light
{
vec3 direction;//只需要方向就足够了
vec3 ambientFactor;
vec3 diffuseFactor;
vec3 specularFactor;
vec3 color;
};
...
void main()
{
vec3 lightDir = normalize(-light.direction);//我运算是光的方向的反方向,前面讲过原因了
...
}
这一次我会尽可能把代码弄详细一些,以后就是局部调整,我也不会在大面积粘贴了。
shaderModel.fs
#version 430
struct Material
{
sampler2D diffuse;
sampler2D specular;
float shininess;
};
struct Light
{
vec3 direct;
float ambientFactor;
float diffuseFactor;
float specularFactor;
vec3 color;
};
uniform Material material;
uniform Light light;
out vec4 color;
uniform vec3 cameraPos;
in vec2 texcoord;
in vec3 Normal;
in vec3 worldPos;
void main(void)
{
vec3 diffuseColor=vec3(texture(material.diffuse,texcoord));
vec3 ambient=light.ambientFactor*light.color*diffuseColor;
vec3 normol=normalize(Normal);
vec3 lightDrict=normalize(light.direct);
float diffuseStringth = max(dot(normol,-lightDrict), 0.0);//用光的反方向,依然与法线有关
vec3 diffuse =light.diffuseFactor* diffuseStringth *light.color*diffuseColor;
vec3 specularColor=vec3(texture(material.specular,texcoord));
vec3 viewDir = normalize(cameraPos - worldPos);
vec3 reflectDir = reflect(lightDrict, normol);
float specularStringth = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
vec3 specular = light.specularFactor * specularStringth*light.color*specularColor;
color= vec4(ambient + diffuse+specular,1.0);
}
MyMesh.h
#pragma once
#include"vector"
#include "MyShader.h"
#include"Camera.h"
#include"iostream"
using namespace std;
struct Vertex
{
QVector3D Position;
QVector3D Normal;
QVector2D TexCoords;
};
struct Texture {
GLint id;
string type;
string fileName;
};
class MyMesh : protected QOpenGLFunctions_4_3_Core
{
public:
vector<Vertex> vertices;//顶点属性向量
vector<GLuint>indices;//索引向量
vector<Texture>textures;//纹理属性向量
MyMesh(vector<Vertex> vertices, vector<GLuint> indices, vector<Texture> texture);
void init(QOpenGLShaderProgram* shaderProgram);
void draw(Camera camera);
void setTranslate(float x,float y,float z);//我们让模型类中可以给每个mesh指定位置,缩放和旋转。
void setScale(float x,float y,float z);
void setRotate(float angle, float x, float y, float z);
private:
float locationX=0.0f, locationY=0.0f, locationZ=-7.0f;
QOpenGLShaderProgram* shaderProgram;
QOpenGLVertexArrayObject vao;
QOpenGLBuffer vbo,ebo;
GLuint vPosition,normal,uv, model_loc,view_loc, cameraPos_loc;
QMatrix4x4 scale, rotate, translate,model;
QVector3D direct, color;//给光的统一变量发送的属性
GLfloat ambientFactor=0.1f, diffuseFactor=1.0f, specularFactor=0.5f, shininess=32.0f;
};
MyMesh.cpp这里修改的肯定多一些
#include "stdafx.h"
#include "MyMesh.h"
MyMesh::MyMesh(vector<Vertex> vertices, vector<GLuint> indices, vector<Texture> textures): ebo(QOpenGLBuffer::IndexBuffer), direct(3.0,5.0,-2.0), color(1.0,1.0,1.0)
{
this->vertices = vertices;
this->indices = indices;
this->textures = textures;
translate.translate(QVector3D(locationX, locationY, locationZ));
rotate.rotate(0.0f, QVector3D(0.0,0.0,0.0));
scale.scale(QVector3D(1.0,1.0,1.0));
}
void MyMesh::init(QOpenGLShaderProgram* shaderProgram)
{
initializeOpenGLFunctions();
this->shaderProgram = shaderProgram;
shaderProgram->bind();
vao.create();
vbo.create();
ebo.create();
vao.bind();
vbo.bind();
vbo.setUsagePattern(QOpenGLBuffer::StaticDraw);
vbo.allocate(&vertices[0], this->vertices.size() * sizeof(Vertex));
// 设置顶点坐标指针
vPosition = shaderProgram->attributeLocation("vPosition");
shaderProgram->setAttributeBuffer(vPosition, GL_FLOAT, 0, 3, sizeof(Vertex));
glEnableVertexAttribArray(vPosition);
// 设置法线指针
normal= shaderProgram->attributeLocation("normal");
shaderProgram->setAttributeBuffer("normal", GL_FLOAT, offsetof(Vertex, Normal), 3, sizeof(Vertex));//shader变量索引,参数类型,偏移量,元素大小,步长
glEnableVertexAttribArray(normal);
// 设置顶点的纹理坐标
uv = shaderProgram->attributeLocation("uv");
shaderProgram->setAttributeBuffer(uv, GL_FLOAT, offsetof(Vertex, TexCoords), 2, sizeof(Vertex));
glEnableVertexAttribArray(uv);
ebo.bind();
ebo.setUsagePattern(QOpenGLBuffer::StaticDraw);
ebo.allocate(&this->indices[0], this->indices.size() * sizeof(GLuint));
vao.release();
ebo.release();
vbo.release();
model_loc = shaderProgram->uniformLocation("model");
view_loc = shaderProgram->uniformLocation("view");
cameraPos_loc = shaderProgram->uniformLocation("cameraPos");
shaderProgram->setUniformValue("material.shininess", shininess);
shaderProgram->setUniformValue("light.direct", direct);
shaderProgram->setUniformValue("light.color", color);
shaderProgram->setUniformValue("light.ambientFactor", ambientFactor);
shaderProgram->setUniformValue("light.diffuseFactor", diffuseFactor);
shaderProgram->setUniformValue("light.specularFactor", specularFactor);
shaderProgram->release();
vertices.clear();
}
void MyMesh::draw(Camera camera) {
shaderProgram->bind();
for (GLuint i = 0; i < this->textures.size(); i++)
{
string name = this->textures[i].type;
if (name == "texture_diffuse")
name = "diffuse";
else if (name == "texture_specular")
name = "specular";
string s = "material." + name;
const char* uniformName = s.c_str();
glActiveTexture(GL_TEXTURE0 + this->textures[i].id); // 在绑定纹理前需要激活适当的纹理单元
glBindTexture(GL_TEXTURE_2D, this->textures[i].id);
shaderProgram->setUniformValue(uniformName, this->textures[i].id);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, 0);
}
//构建视图矩阵
model = translate * rotate* scale;
shaderProgram->setUniformValue(model_loc, model);
QMatrix4x4 v;
v.lookAt(QVector3D(camera.location.x, camera.location.y, camera.location.z),
QVector3D(camera.viewPoint.x, camera.viewPoint.y, camera.viewPoint.z),
QVector3D(camera.worldY.x, camera.worldY.y, camera.worldY.z));
shaderProgram->setUniformValue(view_loc, v);
shaderProgram->setUniformValue(cameraPos_loc, QVector3D(camera.location.x, camera.location.y, camera.location.z));
vao.bind();
glDrawElements(GL_TRIANGLES, this->indices.size(), GL_UNSIGNED_INT, 0);
vao.release();
shaderProgram->release();
}
void MyMesh::setTranslate(float x, float y, float z) {
translate.translate(QVector3D(x, y, z));
}
void MyMesh::setScale(float x, float y, float z) {
scale.scale(QVector3D(x, y, z));
}
void MyMesh::setRotate(float angle, float x, float y, float z) {
rotate.rotate(angle, QVector3D(x, y, z));
}
Model.cpp
#include "stdafx.h"
#include "Model.h"
Model::Model(){
}
Model::~Model() {
meshes.clear();
}
void Model::init(string path, QOpenGLShaderProgram* shaderProgram) {
this->shaderProgram = shaderProgram;
loadModel(path);
}
void Model::setModelLocation(QVector3D location) {//这连续3个函数暴露给外部以便于设置模型的位置,大小和旋转角度。
for (GLuint i = 0; i < this->meshes.size(); i++)
{
this->meshes[i]->setTranslate(location.x(), location.y(), location.z());
}
}
void Model::setModelRotate(float angle,QVector3D rotate) {
for (GLuint i = 0; i < this->meshes.size(); i++)
{
this->meshes[i]->setRotate(angle,rotate.x(), rotate.y(), rotate.z());
}
}
void Model::setModelScale(QVector3D scale) {
for (GLuint i = 0; i < this->meshes.size(); i++)
{
this->meshes[i]->setScale(scale.x(), scale.y(), scale.z());
}
}
void Model::draw(Camera camera)
{
for (GLuint i = 0; i < this->meshes.size(); i++)
{
this->meshes[i]->draw(camera);
}
}
void Model::loadModel(string path)
{
Assimp::Importer import;
const aiScene* scene = import.ReadFile(path, aiProcess_Triangulate | aiProcess_FlipUVs);
if (!scene || scene->mFlags == AI_SCENE_FLAGS_INCOMPLETE || !scene->mRootNode)
{
qDebug() << "ERROR::ASSIMP::" << import.GetErrorString() << endl;
return;
}
this->directory =path.substr(0, path.find_last_of('/'));
this->processNode(scene->mRootNode, scene);
}
void Model::processNode(aiNode* node, const aiScene* scene)
{
// 添加当前节点中的所有Mesh
for (GLuint i = 0; i < node->mNumMeshes; i++)
{
aiMesh* mesh = scene->mMeshes[node->mMeshes[i]];
this->meshes.push_back(this->processMesh(mesh, scene));
}
// 递归处理该节点的子孙节点
for (GLuint i = 0; i < node->mNumChildren; i++)
{
this->processNode(node->mChildren[i], scene);
}
}
MyMesh* Model::processMesh(aiMesh* mesh, const aiScene* scene)
{
vector<Vertex> vertices;
vector<GLuint> indices;
vector<Texture> textures;
//qDebug() << "mNumVertices:" << mesh->mNumVertices;
for (GLuint i = 0; i < mesh->mNumVertices; i++)
{
Vertex vertex;
// 处理顶点坐标、法线和纹理坐标
vertex.Position.setX(mesh->mVertices[i].x);
vertex.Position.setY(mesh->mVertices[i].y);
vertex.Position.setZ(mesh->mVertices[i].z);
vertex.Normal.setX(mesh->mNormals[i].x);
vertex.Normal.setY(mesh->mNormals[i].y);
vertex.Normal.setZ(mesh->mNormals[i].z);
if (mesh->mTextureCoords[0]) // Does the mesh contain texture coordinates?
{
vertex.TexCoords.setX(mesh->mTextureCoords[0][i].x);
vertex.TexCoords.setY(mesh->mTextureCoords[0][i].y);
}
else { vertex.TexCoords.setX(0.0);
vertex.TexCoords.setY(0.0);}
vertices.push_back(vertex);
}
// 处理顶点索引
for (GLuint i = 0; i < mesh->mNumFaces; i++)
{
aiFace face = mesh->mFaces[i];
for (GLuint j = 0; j < face.mNumIndices; j++)
{
indices.push_back(face.mIndices[j]);
}
}
//处理材质
if(mesh->mMaterialIndex >= 0)
{
aiMaterial* material = scene->mMaterials[mesh->mMaterialIndex];
vector<Texture> diffuseMats = this->loadMaterialTextures(material,
aiTextureType_DIFFUSE, "texture_diffuse");
textures.insert(textures.end(), diffuseMats.begin(), diffuseMats.end());//把区间[start,end]插入到迭代器的指定位置
vector<Texture> specularMats = this->loadMaterialTextures(material,
aiTextureType_SPECULAR, "texture_specular");
textures.insert(textures.end(), specularMats.begin(), specularMats.end());
}
MyMesh* myMesh = new MyMesh( vertices, indices, textures);
myMesh->init(shaderProgram);
return myMesh;
}
vector<Texture> Model::loadMaterialTextures(aiMaterial* mat, aiTextureType type, string typeName)
{
vector<Texture> textures;
if (mat->GetTextureCount(type) == 0) {//没有纹理我们也创建一个空的,避免纹理不更新,被上次的覆盖。
cout<< typeName <<":no find texture"<<endl;
Texture texture;
texture.id = 0;
texture.type = typeName;
texture.fileName = "no";
textures.push_back(texture);
return textures;
}
for (GLuint i = 0; i < mat->GetTextureCount(type); i++)
{
aiString folderPath;
mat->GetTexture(type, i, &folderPath);
GLboolean skip = false;
for (GLuint j = 0; j < textures.size(); j++)
{
if (textures[j].fileName == folderPath.C_Str())
{
textures.push_back(textures[j]);
skip = true;
break;
}
}
if (!skip)
{ // 如果纹理没有被加载过,加载之
Texture texture;
string filePath = this->directory;
string fileName = folderPath.C_Str();
if (fileName[0] != '\\' || fileName[0] != '/') {//这里做了点改动,因为我法线下载的有的模型中存储的纹理是个路径,我们只需要他的名字就好了,然后和模型放在统一文件夹下。
if (fileName.find_last_of('/') != string::npos)
fileName = fileName.substr(fileName.find_last_of('/'));
if(fileName.find_last_of('\\') != string::npos)
fileName = fileName.substr(fileName.find_last_of('\\'));
}
//cout << typeName <<":"<< fileName <<endl;
filePath += fileName;
//cout << "texturePath:" << filePath << endl;
Image image;
image.loadImage(filePath);
texture.id = image.getTextureID();
texture.type = typeName;
texture.fileName = fileName;
textures.push_back(texture);
}
}
return textures;
}
效果:
image.png
这时我们方向效果更符合现实了,背向太阳的方向要明显暗一些。而不是之前的哪个不完整的点光源的效果。
目录
VSC++2019+QT+OpenGL
QT+OpenGL一之绘制立方体(三角形图元)
QT+OpenGL二之纹理贴图
QT+OpenGL三之矩阵简解
QT+OpenGL四之相机的移动和旋转
QT+OpenGL五之绘制不同的模型(vao,vbo机制)
QT+OpenGL六之天空盒
QT+OpenGL七之使用EBO
QT+OPenGL八之模型准备
QT+OPenGL九之模型解码
QT+OPenGL十之光照模型
QT+OPenGL十一之漫反射和镜面反射贴图
QT+OPenGL十二之定向光
QT+OPenGL十三之真正的点光源和聚光灯
QT+OPenGL十四之多光源混合的问题
QT+OPenGL十五之深度缓冲区
QT+OPenGL十六之模板缓冲区
QT+OPenGL十七帧缓冲区(离屏渲染)
QT+OPenGL十八抗锯齿
QT+OPenGL十九镜面反射效率调整
QT+OPenGL二十Gamma校正
网友评论