美文网首页动态规划动态规划
Sequence DP - 132. Palindrome Pa

Sequence DP - 132. Palindrome Pa

作者: Super_Alan | 来源:发表于2018-04-12 02:31 被阅读0次

    https://leetcode.com/problems/palindrome-partitioning-ii/description/

    • 状态定义: dp[i] 为 min cut count for string s.sub(0, i);
    • 状态转移方程: dp[i] = min of: s.substring(j, i) is palindrome ? dp[j] + 1 : dp[j] + (i - j) where j < i
    • 初始化:dp length 为 s.length() + 1; dp[0] = 0; dp[1] = 0;
    • 循环体: 双循环
    • 返回 target:dp[len - 1]

    Time Limit Exceeded even if with HashMap. "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"

    class Solution {
    
        HashMap<String, Boolean> map = new HashMap<>();
        
        public int minCut(String s) {
            if (s == null || s.length() == 0) {
                return 0;
            }
            
            int len = s.length();
            int[] minCuts = new int[len + 1];
            for (int i = 0; i <= len; i++) {
                minCuts[i] = i - 1;
            }
    
            for (int i = 1; i <= len; i++) {
                for (int j = 0; j < i; j++) {
                    String sub = s.substring(j, i);
                    if (isPalindrome(sub)) {
                        minCuts[i] = Math.min(minCuts[i], minCuts[j] + 1);
                    }
                }
            }
            return minCuts[len];
        }
        
        private boolean isPalindrome(String s) {
            if (map.containsKey(s)) {
                return map.get(s);
            }
            
            int left = 0, right = s.length() - 1;
            
            while (left <= right) {
                if (s.charAt(left) != s.charAt(right)) {
                    map.put(s, false);
                    return false;
                }
                left++;
                right--;
            }
            
            map.put(s, true);
            return true;
        }
    }
    

    isPalindrome也使用了 DP 后通过了测试。其实,上面所使用的 HashMap 并不能提高运算效率或 Runtime,因为这里的 Hash 计算是需要遍历 string 所有 chars 来计算的,所以效率甚至不及不使用 Hash。

    class Solution {    
        public int minCut(String s) {
            if (s == null || s.length() == 0) {
                return 0;
            }
                    
            boolean[][] palindromeMap = buildPalindromeMap(s);
            
            int len = s.length();
            int[] minCuts = new int[len + 1];
            for (int i = 0; i <= len; i++) {
                minCuts[i] = i - 1;
            }
    
            for (int i = 1; i <= len; i++) {
                for (int j = 0; j < i; j++) {
                    if (palindromeMap[j][i]) {
                        minCuts[i] = Math.min(minCuts[i], minCuts[j] + 1);
                    }
                }
            }
            return minCuts[len];
        }
        
        private boolean[][] buildPalindromeMap(String s) {
            int len = s.length();
            boolean[][] palindromeMap = new boolean[len + 1][len + 1];
            
            for (int i = 0; i < len; i++) {
                palindromeMap[i][i + 1] = true;
                palindromeMap[i][i] = true;
            }
            
            for (int i = 2; i <= len; i++) {
                for (int j = 0; j < i - 1; j++) {
                    if (s.charAt(j) == s.charAt(i - 1) && palindromeMap[j + 1][i - 1]) {
                        palindromeMap[j][i] = true;
                    } 
                }
            }
            
            return palindromeMap;
        }
    }
    

    上面 DP 对应 string 的方式,是 string split 的方式。这种方式可以描述为前 i 个字符。

    上面解法使用了两次DP,第一次是对 s 所有 substring 进行判断是否为 palindrome;第二次是对 s 以 index 0 开始的所有substring 进行运算 minCuts;


    From 九章:
    state: f[i]”前i”个字符组成的子字符串需要最少 几次cut(最少能被分割为多少个字符串-1)
    function: f[i] = MIN{f[i], f[j]+1}, j < i && j+1 ~ i这一 段是一个回文串
    intialize: f[i] = i - 1 (f[0] = -1) answer: f[s.length()]

    相关文章

      网友评论

        本文标题:Sequence DP - 132. Palindrome Pa

        本文链接:https://www.haomeiwen.com/subject/hlyhhftx.html