美文网首页
数据结构

数据结构

作者: mumuxi_ | 来源:发表于2020-07-20 21:45 被阅读0次

    数据结构概述

    数据的逻辑结构,也简称数据结构,是指从解决问题的需要出发,为实现必要的功能所建立的数据结构,是面向问题的。而数据的物理结构(也称为存储结构)是指数据应该如何在计算机中存放,是数据的逻辑结构的物理存储方式,是属于具体实现的视图,是面向计算机的。数据的逻辑结构根据问题所需要实现的功能建立,数据的物理结构根据问题所需求的响应速度、处理时间、修改时间、存储空间和单位时间的处理量等建立,是逻辑数据的存储映像。

    数据结构三要素:数据逻辑结构、数据存储结构和数据的运算。

    1. 数据的逻辑结构

    逻辑结构是指数据元素之间的逻辑关系,即从逻辑关系上描述数据。它与数据的存储无关,是独立于计算机的。数据的逻辑结构分为线性结构和非线性结构,线性表是典型的线性结构;集合、树和图是典型的非线性结构。

    • 集合结构中的数据元素之间除了 “同属于一个集合”的关系外,别无其他关系。
    • 线性结构结构中的数据元素之间只存在一对一的关系。
    • 树形结构结构中的数据元素之间存在一对多的关系。
    • 图状结构或网状结构结构中的数据元素之间存在多对多的关系。

    2. 数据的存储结构

    存储结构是指数据结构在计算机中的表示(又称映像),也称物理结构。它包括数据元素的表示和关系的表示。数据的存储结构是逻辑结构用计算机语言的实现,它依赖于计算机语言。数据的存储结构主要有:顺序存储、链式存储、索引存储和散列存储。

    • 顺序存储:把逻辑上相邻的元素存储在物理位置上也相邻的存储单元里,元素之间的关系由存储单元的邻接关系来体现。其优点是可以实现随机存取,每个元素占用最少的存储空间;缺点是只能使用相邻的一整块存储单元,因此可能产生较多的外部碎片。

    • 链接存储:不要求逻辑上相邻的元素在物理位置上也相邻,借助指示元素存储地址的指针表示元素之间的逻辑关系。其优点是不会出现碎片现象,充分利用所有存储单元;缺点是每个元素因存储指针而占用额外的存储空间,并且只能实现顺序存取。

    • 索引存储:在存储元素信息的同时,还建立附加的索引表。索引表中的每一项称为索引项,索引项的一般形式是:(关键字,地址)。其优点是检索速度快;缺点是增加了附加的索引表,会占用较多的存储空间。另外,在增加和删除数据时要修改索引表,因而会花费较多的时间。

    • 散列存储:根据元素的关键字直接计算出该元素的存储地址,又称为Hash存储。其优点是检索、增加和删除结点的操作都很快;缺点是如果散列函数不好可能出现元素存储单元的冲突,而解决冲突会增加时间和空间开销。

    3. 数据的运算

    施加在数据上的运算包括运算的定义和实现。运算的定义是针对逻辑结构的,指出运算的功能;运算的实现是针对存储结构的,指出运算的具体操作步骤。

    数据结构分类

     数据结构是指相互之间存在着一种或多种关系的数据元素的集合和该集合中数据元素之间的关系组成 。
    常用的数据结构有:数组,栈,链表,队列,树,图,堆,散列表 等。

    数组

    特点:我们都知道数组中的元素在内存中连续存储的,可以根据是下标快速访问元素,因此,查询速度很快,然而插入和删除时,需要对元素移动空间,比较慢。
    使用场景:频繁查询,很少增加和删除的情况。

    特点:先进后出,就像一个箱子。
    使用场景:实现递归以及表示式。

    队列

    特点:先进先出。
    使用场景:多线程阻塞队列管理非常有用。

    链表

    特点:元素可以不连续内存中,是以索引将数据联系起来的,当查询元素的时候需要从头开始查询,所以效率比较低,然而添加和删除的只需要修改索引就可以了。
    使用场景:少查询,需要频繁的插入或删除情况。

     树是一种数据结构,它是由n(n>=1)个有限节点组成一个具有层次关系的集合。把它叫做 “树” 是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:

    • 每个节点有零个或多个子节点;
    • 没有父节点的节点称为根节点;
    • 每一个非根节点有且只有一个父节点;
    • 除了根节点外,每个子节点可以分为多个不相交的子树;

    在日常的应用中,我们讨论和用的更多的是树的其中一种结构,就是二叉树。


    二叉树是树的特殊一种,具有如下特点:

    1、每个结点最多有两颗子树,结点的度最大为2。
    2、左子树和右子树是有顺序的,次序不能颠倒。
    3、即使某结点只有一个子树,也要区分左右子树。

    二叉树是一种比较有用的折中方案,它添加,删除元素都很快,并且在查找方面也有很多的算法优化,所以,二叉树既有链表的好处,也有数组的好处,是两者的优化方案,在处理大批量的动态数据方面非常有用。

    扩展:
    二叉树有很多扩展的数据结构,包括平衡二叉树、红黑树、B+树等,这些数据结构二叉树的基础上衍生了很多的功能,在实际应用中广泛用到,例如mysql的数据库索引结构用的就是B+树,还有HashMap的底层源码中用到了红黑树。这些二叉树的功能强大,但算法上比较复杂,想学习的话还是需要花时间去深入的。

     图是由结点的有穷集合V和边的集合E组成。其中,为了与树形结构加以区别,在图结构中常常将结点称为顶点,边是顶点的有序偶对,若两个顶点之间存在一条边,就表示这两个顶点具有相邻关系。

    按照顶点指向的方向可分为无向图和有向图:


     堆是一种比较特殊的数据结构,可以被看做一棵树的数组对象,具有以下的性质:

    • 堆中某个节点的值总是不大于或不小于其父节点的值;
    • 堆总是一棵完全二叉树。

    散列表

     散列表,也叫哈希表,说白了其实是一个“数组链表”,是根据关键码和值 (key和value) 直接进行访问的数据结构,通过key和value来映射到集合中的一个位置,这样就可以很快找到集合中的对应元素。

    记录的存储位置=f(key)

    这里的对应关系 f 成为散列函数,又称为哈希 (hash函数),而散列表就是把Key通过一个固定的算法函数既所谓的哈希函数转换成一个整型数字,然后就将该数字对数组长度进行取余,取余结果就当作数组的下标(解释:散列表其实就是一个“数组链表”,数组里的每一个元素都是一个“单链表”,先通过hash函数计算hash值,然后用hash值对数组长度取余,然后根据取余结果决定把value存到哪一个数组元素里面去),将value存储在以该数字为下标的数组空间里,这种存储空间可以充分利用数组的查找优势来查找元素,所以查找的速度很快。

    哈希表在应用中也是比较常见的,就如Java中有些集合类就是借鉴了哈希原理构造的,例如HashMap,HashTable等,利用hash表的优势,对于集合的查找元素时非常方便的,然而,因为哈希表是基于数组衍生的数据结构,在添加删除元素方面是比较慢的,所以很多时候需要用到一种数组链表来做,也就是拉链法。拉链法是数组结合链表的一种结构,较早前的hashMap底层的存储就是采用这种结构,直到jdk1.8之后才换成了数组加红黑树的结构

    相关文章

      网友评论

          本文标题:数据结构

          本文链接:https://www.haomeiwen.com/subject/hmzwhktx.html