1.什么是堆?
堆是计算机科学中一类特殊的数据结构的统称。堆通常是一个可以被看做一棵树的数组对象。堆总是满足下列性质:
1.堆中某个节点的值总是不大于或不小于其父节点的值;
2.堆总是一棵完全二叉树。
如果有想学习java的同学,可来我们的java技术学习QQ群:165080868,免费送整套系统的java视频教程!我每晚上8点还会在群内直播讲解Java知识,欢迎大家前来学习哦。下面是部分资料截图:
2.什么是堆排序?
堆排序(英语:Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。
3.算法思想
最大堆的算法思想是:
先将初始的R[0…n-1]建立成最大堆,此时是无序堆,而堆顶是最大元素
再将堆顶R[0]和无序区的最后一个记录R[n-1]交换,由此得到新的无序区R[0…n-2]和有序区R[n-1],且满足R[0…n-2].keys ≤ R[n-1].key
由于交换后,前R[0…n-2]可能不满足最大堆的性质,因此再调整前R[0…n-2]为最大堆,直到只有R[0]最后一个元素才调整完成。
最大堆排序完成后,其实是升序序列,每次调整堆都是要得到最大的一个元素,然后与当前堆的最后一个元素交换,因此最后所得到的序列是升序序列。
最小堆的算法思想是:
先将初始的R[0…n-1]建立成最小堆,此时是无序堆,而堆顶元素是最小的元素
再将堆顶R[0]与无序区的最后一个R[n-1]交换,由此得到新的无序堆R[0…n-2]和有序堆R[n-1],且满足R[0…n-2].keys >= R[n-1].key
由于交换后,前R[0…n-2]可能不满足最小堆的性质,因此再调整前R[0…n-2]为最小堆,直到只有R[0]最后一个元素才调整完成
最小堆排序完成后,其实是降序序列,每次调整堆都是要得到最小的一个元素,然后与当前无序堆的最后一个元素交换,所以所得到的序列是降序的。
提示:堆排序的过程,其实就是不断地扩大有序区,然后不断地缩小无序区,直到只有有序区的过程。
4.排序过程分析
因为算法比较抽象,这里直接通过举个小例子来说明堆排序的过程是如何的。下面我们用这个无序序列采用最大堆的进行堆排序,所得到的序列就是升序序列(ASC)。
无序序列:89,-7,999,-89,7,0,-888,7,-7
第一步:初始化建成最大堆:
第二步:将堆顶最大元素999与无序区的最后一个元素交换,使999成为有序区。交换后,-7成为堆顶,由于-7并不是无序区中最大的元素,因此需要调整无序区,使无序区中最大值89成为堆顶,所以-7与89交换。交换后导致89的右子树不满足最大堆的性质,因此要对右子树调整成最大堆,所以-7要与0交换,如下图:
从图中看到,当-7成89交换后,堆顶是最大元素了,但是-7的左孩子是0,右孩子是-888,由于-7<0,导致-7这个结点不满足堆的性质,因此需要调整它。所以,0与-7交换。
然后不断重复着第二步的过程,直到全部成为有序区。
最后:所得到的是升序序列
5.时间复杂度
堆排序的时间,主要由建立初始堆和反复调整堆这两部分的时间开销构成.由于堆排序是不稳定的,它得扭到的时间复杂度会根据实际情况较大,因此只能取平均时间复杂度。
平均时间复杂度为:O( N * log2(N) )
堆排序耗时的操作有:初始堆 + 反复调整堆,时间复杂度如下:
1.初始建堆:每个父节点会和左右子节点进行最多2次比较和1次交换,所以复杂度跟父节点个数有关。根据2x <= n(x为n个元素可以折半的次数,也就是父节点个数),得出x = log2n。即O ( log2n )
2.反复调整堆:由于初始化堆过程中,会记录数组比较结果,所以堆排序对原序列的数组顺序并不敏感,最好情况和最坏情况差不多。需要抽取 n-1 次堆顶元素,每次取堆顶元素都需要重建堆(O(重建堆) < O(初始堆))。所以小于 O(n-1) * O(log2n)
使用建议:
由于初始化堆需要比较的次数较多,因此,堆排序比较适合于数据量非常大的场合(百万数据或更多)。由于高效的快速排序是基于递归实现的,所以在数据量非常大时会发生堆栈溢出错误。
6.Java示例代码
欢迎关注胖胖爱Java的简书号,可视化学习java,每天更新文章,让Java学习更加简单。
声明:本文内容来源于网络,如有侵权请联系删除
网友评论