美文网首页OpenPose
OpenPose训练过程解析(7)

OpenPose训练过程解析(7)

作者: LaLa_2539 | 来源:发表于2018-10-11 19:08 被阅读0次

    总结

    DataLayerSetUp

    首先,cpm_data_layer.cpp调用DataLayerSetUp函数设置层参数

    template <typename Dtype>
    void CPMDataLayer<Dtype>::DataLayerSetUp(const vector<Blob<Dtype>*>& bottom,
          const vector<Blob<Dtype>*>& top)
    

    transformed_label_在这里被Reshape为以下维度,其中num_parts为56

    this->transformed_label_.Reshape(1, 2*(num_parts+1), height/stride, width/stride);  //Line:91
    

    load_batch

    接下来调用load_batch函数,

    template<typename Dtype>
    void CPMDataLayer<Dtype>::load_batch(Batch<Dtype>* batch)
    

    Transform函数未调用

    因为 datum.encoded() = false(encoded详见训练过程(4))

    if (datum.encoded()) {
          this->cpm_data_transformer_->Transform(cv_img, &(this->transformed_data_));
        }
    

    Transform_nv

    调用Transform_nv函数

    else {
          this->cpm_data_transformer_->Transform_nv(datum,   //Datum& datum: 应该为读入的数据
            &(this->transformed_data_),  //this->transformed_data_.set_cpu_data(top_data + offset_data);
            &(this->transformed_label_), cnt);  //this->transformed_label_.set_cpu_data(top_label + offset_label);
          ++cnt;  //cnt在batch_size  for循环外初始值为0,for循环内自增1
        }
    
    template<typename Dtype> void CPMDataTransformer<Dtype>::Transform_nv(const Datum& datum, Dtype* transformed_data, Dtype* transformed_label, int cnt)
    
    ReadMetaData(meta, data, offset3, offset1); //data = datum.data()    Line:514 
    
    

    ReadMetaData(meta, data, offset3, offset1); 将data中的数据按顺序读入到meta中,类似于genLMDB.py生成的output.txt数据格式


    TransformMetaJoints

      TransformMetaJoints(meta);
    

    17个关节点变为18个


    JSON_17num_parts.png
    void CPMDataTransformer<Dtype>::TransformJoints(Joints& j) {
      //transform joints in meta from np_in_lmdb (specified in prototxt) to np (specified in prototxt)
      Joints jo = j;
    
      if(np == 56){
        int COCO_to_ours_1[18] = {1,6, 7,9,11, 6,8,10, 13,15,17, 12,14,16, 3,2,5,4};  //17个关节点变为18个
        int COCO_to_ours_2[18] = {1,7, 7,9,11, 6,8,10, 13,15,17, 12,14,16, 3,2,5,4};
        jo.joints.resize(np);
        jo.isVisible.resize(np);
        for(int i=0;i<18;i++){
          jo.joints[i] = (j.joints[COCO_to_ours_1[i]-1] + j.joints[COCO_to_ours_2[i]-1]) * 0.5;
          if(j.isVisible[COCO_to_ours_1[i]-1]==2 || j.isVisible[COCO_to_ours_2[i]-1]==2){
            jo.isVisible[i] = 2;
          }
          else if(j.isVisible[COCO_to_ours_1[i]-1]==3 || j.isVisible[COCO_to_ours_2[i]-1]==3){
            jo.isVisible[i] = 3;
          }
          else {
            jo.isVisible[i] = j.isVisible[COCO_to_ours_1[i]-1] && j.isVisible[COCO_to_ours_2[i]-1];
          }
        }
      }
    
    

    generateLabelMap

      generateLabelMap(transformed_label, img_aug, meta);
    
    void CPMDataTransformer<Dtype>::generateLabelMap(Dtype* transformed_label, Mat& img_aug, MetaData meta)
    

    放置高斯响应,放置高斯响应函数比较简单(至于transformed_label为什么要从[(np+1) * channelOffset + g_y * grid_x + g_x]开始,是因为在generateLabelMap函数之前,被mask_miss和一个background占了

    if (mode > 4){
        for (int g_y = 0; g_y < grid_y; g_y++){
          for (int g_x = 0; g_x < grid_x; g_x++){
            for (int i = 0; i < np; i++){
              float weight = float(mask_miss_aug.at<uchar>(g_y, g_x)) /255; //mask_miss_aug.at<uchar>(i, j); 
              if (meta.joint_self.isVisible[i] != 3){
                transformed_labeld[i*channelOffset + g_y*grid_x + g_x] = weight;
              }
            }  
            // background channel
            if(mode == 5){
              transformed_label[np*channelOffset + g_y*grid_x + g_x] = float(mask_miss_aug.at<uchar>(g_y, g_x)) /255;
            }
            if(mode > 5){
              transformed_label[np*channelOffset + g_y*grid_x + g_x] = 1;
              transformed_label[(2*np+1)*channelOffset + g_y*grid_x + g_x] = float(mask_all_aug.at<uchar>(g_y, g_x)) /255;
            }
          }
        }
      }
    
      for (int g_y = 0; g_y < grid_y; g_y++){
        for (int g_x = 0; g_x < grid_x; g_x++){
          for (int i = np+1; i < 2*(np+1); i++){
            if (mode == 6 && i == (2*np + 1))
              continue;
            transformed_label[i*channelOffset + g_y*grid_x + g_x] = 0;
          }
        }
      }
      if (np == 56){
        for (int i = 0; i < 18; i++){
          Point2f center = meta.joint_self.joints[i];
          if(meta.joint_self.isVisible[i] <= 1){
            putGaussianMaps(transformed_label + (i+np+39)*channelOffset, center, param_.stride(), 
                            grid_x, grid_y, param_.sigma()); //self 放置关节点高斯响应
          }
          for(int j = 0; j < meta.numOtherPeople; j++){ //for every other person
            Point2f center = meta.joint_others[j].joints[i];
            if(meta.joint_others[j].isVisible[i] <= 1){
              putGaussianMaps(transformed_label + (i+np+39)*channelOffset, center, param_.stride(), 
                              grid_x, grid_y, param_.sigma());
            }
          }
        }
    
    

    2×19(PAF)的数组排序

        int mid_1[19] = {2, 9,  10, 2,  12, 13, 2, 3, 4, 3,  2, 6, 7, 6,  2, 1,  1,  15, 16};
        int mid_2[19] = {9, 10, 11, 12, 13, 14, 3, 4, 5, 17, 6, 7, 8, 18, 1, 15, 16, 17, 18};
        int thre = 1;
    
        for(int i=0;i<19;i++){   // 2×19=38 2×PAF
          Mat count = Mat::zeros(grid_y, grid_x, CV_8UC1);
          Joints jo = meta.joint_self;
          if(jo.isVisible[mid_1[i]-1]<=1 && jo.isVisible[mid_2[i]-1]<=1){
            //putVecPeaks
            putVecMaps(transformed_label + (np+ 1+ 2*i)*channelOffset, transformed_label + (np+ 2+ 2*i)*channelOffset, 
                      count, jo.joints[mid_1[i]-1], jo.joints[mid_2[i]-1], param_.stride(), grid_x, grid_y, param_.sigma(), thre); //self
          } //与COCO对应
    
          for(int j = 0; j < meta.numOtherPeople; j++){ //for every other person
            Joints jo2 = meta.joint_others[j];
            if(jo2.isVisible[mid_1[i]-1]<=1 && jo2.isVisible[mid_2[i]-1]<=1){
              //putVecPeaks
              putVecMaps(transformed_label + (np+ 1+ 2*i)*channelOffset, transformed_label + (np+ 2+ 2*i)*channelOffset, 
                      count, jo2.joints[mid_1[i]-1], jo2.joints[mid_2[i]-1], param_.stride(), grid_x, grid_y, param_.sigma(), thre); //self
            }
          }
        }
    

    putVecMaps函数用于设置PAF的labels,count初始值为0

    Mat count = Mat::zeros(grid_y, grid_x, CV_8UC1);
    
    void CPMDataTransformer<Dtype>::putVecMaps(Dtype* entryX, Dtype* entryY, Mat& count, Point2f centerA, Point2f centerB, int stride, int grid_x, int grid_y, float sigma, int thre)
    

    相关文章

      网友评论

        本文标题:OpenPose训练过程解析(7)

        本文链接:https://www.haomeiwen.com/subject/hqtiaftx.html