-
Pull方式
Flume Agent 编写
# Name the components on this agent
simple-agent.sources = netcat-source
simple-agent.sinks = spark-sink
simple-agent.channels = memory-channel
# Describe/configure the source
simple-agent.sources.netcat-source.type = netcat
simple-agent.sources.netcat-source.bind = localhost
simple-agent.sources.netcat-source.port = 44444
# Describe the sink
simple-agent.sinks.spark-sink.type = org.apache.spark.streaming.flume.sink.SparkSink
simple-agent.sinks.spark-sink.hostname =localhost
simple-agent.sinks.spark-sink.port =41414
simple-agent.sinks.spark-sink.channel = memoryChannel
# Use a channel which buffers events in memory
simple-agent.channels.memory-channel.type = memory
# Bind the source and sink to the channel
simple-agent.sources.netcat-source.channels = memory-channel
simple-agent.sinks.spark-sink.channel = memory-channel
启动Flume
flume-ng agent \
--name simple-agent \
--conf conf $FLUME_HOME/conf \
--conf-file $FLUME_HOME/conf/flume_pull_streaming.conf \
-Dflume.root.logger=INFO,console &
-
Push方式
Flume Agent的编写
# Name the components on this agent
simple-agent.sources = netcat-source
simple-agent.sinks = avro-sink
simple-agent.channels = memory-channel
# Describe/configure the source
simple-agent.sources.netcat-source.type = netcat
simple-agent.sources.netcat-source.bind = localhost
simple-agent.sources.netcat-source.port = 44444
# Describe the sink
simple-agent.sinks.avro-sink.type = avro
simple-agent.sinks.avro-sink.hostname = localhost
simple-agent.sinks.avro-sink.port = 41414
# Use a channel which buffers events in memory
simple-agent.channels.memory-channel.type = memory
# Bind the source and sink to the channel
simple-agent.sources.netcat-source.channels = memory-channel
simple-agent.sinks.avro-sink.channel = memory-channel
启动flume
flume-ng agent \
--name simple-agent \
--conf conf $FLUME_HOME/conf \
--conf-file $FLUME_HOME/conf/flume_push_streaming.conf \
-Dflume.root.logger=INFO,console &
==注意在本地和服务器上切换的时候需要修改flume的sink的hostname==
本地测试总结
- 启动SparkStreaming作业
- 启动flume agent
- 通过telnet输入数据,观察IDEA控制台的输出
提交到服务器
spark-submit \
--class com.gwf.spark.FlumePushWordCount \
--master local[2] \
--packages org.apache.spark:spark-streaming-flume_2.11:2.2.0 \
/Users/gaowenfeng/Documents/IDE/newsell/spark-train/target/spark-train-1.0-SNAPSHOT.jar localhost 41414
spark-submit \
--class com.gwf.spark.FlumePushWordCount \
--master local[2] \
/Users/gaowenfeng/Documents/IDE/newsell/spark-train/target/spark-train-1.0-SNAPSHOT.jar localhost 41414
网友评论