Approach: Pull-based Approach using a Custom Sink
Flume的sink不直接连接Spark组件,而是存到一个Customer sink中存在buffer中
Spark Streaming进行分批次拉取数据。每一次操作只有当数据到达并且以副本的形式复制成功以后才算成功,因此该方式提高了容错性。
Flume配置文件 flume_pull_streaming.conf
simple-agent.sources = netcat-source
simple-agent.sinks = spark-sink
simple-agent.channels = memory-channel
simple-agent.sources.netcat-source.type = netcat
simple-agent.sources.netcat-source.bind = hadoop000
simple-agent.sources.netcat-source.port = 44444
simple-agent.sinks.spark-sink.type = org.apache.spark.streaming.flume.sink.SparkSink
simple-agent.sinks.spark-sink.hostname = hadoop000
simple-agent.sinks.spark-sink.port = 41414
simple-agent.channels.memory-channel.type = memory
simple-agent.sources.netcat-source.channels = memory-channel
simple-agent.sinks.spark-sink.channel = memory-channel
该配置中指定了agent的sink类型为org.apache.spark.streaming.flume.sink.SparkSink
并且指定了该sink对应的地址和端口
SparkStreaming 端代码:
object flumePull {
def main(args: Array[String]): Unit = {
if(args.length != 2){
System.err.println("Usage:flumePull <hostname> <port>")
System.exit(1)
}
val conf: SparkConf = new SparkConf().setAppName("flumePull").setMaster("local[*]")
val ssc = new StreamingContext(conf,Seconds(3))
val flumeEvent: ReceiverInputDStream[SparkFlumeEvent] = FlumeUtils.createPollingStream(ssc,args(0),args(1).toInt)
//将SparkFlumeEvent转换为String
val lines: DStream[String] = flumeEvent.map(fe => new String(fe.event.getBody.array()).trim)
val res: DStream[(String, Int)] = lines.flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_)
res.print()
ssc.start()
ssc.awaitTermination()
}
}
其中指定的地址和端口号是SparkSink对应的地址和端口号
网友评论