美文网首页
typescript设计模式 —— 生产型模式和结构型模式

typescript设计模式 —— 生产型模式和结构型模式

作者: yozosann | 来源:发表于2020-03-14 17:13 被阅读0次

    重学设计模式

    Design pattern implementations in TypeScript笔记。

    十一种行为型设计模式

    责任链模式

    namespace ChainOfResponsibilityPattern {
    
        export class Handler {
            private handler: Handler;
            private req: number;
    
            constructor(req: number) {
                this.req = req;
            }
    
            public setHandler(handler: Handler): void {
                this.handler = handler;
            }
    
            public operation(msg: string, req: number): void {
                if (req <= this.req) {
                    this.handlerRequest(msg)
                } else if (this.handler !== null && this.handler !== undefined) {
                    this.handler.operation(msg, req);
                }
            }
    
            public handlerRequest(msg: string): void {
                throw new Error("Abstract method!");
            }
        }
    
        export class ConcreteHandler1 extends Handler {
            constructor(req: number) {
                super(req);
            }
            public handlerRequest(msg: string) {
                console.log("Message (ConcreteHandler1) :: ", msg);
            }
        }
    
    
        export class ConcreteHandler2 extends Handler {
            constructor(req: number) {
                super(req);
            }
            public handlerRequest(msg: string) {
                console.log("Message :: (ConcreteHandler2) ", msg);
            }
        }
    
        export class ConcreteHandler3 extends Handler {
            constructor(req: number) {
                super(req);
            }
            public handlerRequest(msg: string) {
                console.log("Message :: (ConcreteHandler3) ", msg);
            }
        }
    }
    

    意图:使多个对象都有机会处理请求,从而避免请求的发送者和接收者之间的耦合关系。将这些对象连成一条链,并沿着这条链传递该请求,直到有一个对象处理它为止。
    核心:

    • Handler: 对请求的抽象处理者
    • ConcreteHandler:请求的具体处理者,他们都继承了setHandler方法,当自己不处理这个请求的时候,会自动把请求转移到下一个handler去处理。

    命令模式

    namespace CommandPattern {
        export class Command {
            public execute(): void {
                throw new Error("Abstract method!");
            }
        }
    
        export class ConcreteCommand1 extends Command {
            private receiver: Receiver;
    
            constructor(receiver: Receiver) {
                super();
                this.receiver = receiver;
            }
    
            public execute(): void {
                console.log("`execute` method of ConcreteCommand1 is being called!");
                this.receiver.action();
            }
        }
    
        export class ConcreteCommand2 extends Command {
            private receiver: Receiver;
    
            constructor(receiver: Receiver) {
                super();
                this.receiver = receiver;
            }
    
            public execute(): void {
                console.log("`execute` method of ConcreteCommand2 is being called!");
                this.receiver.action();
            }
        }
    
        export class Invoker {
            private commands: Command[];
    
            constructor() {
                this.commands = [];
            }
    
            public storeAndExecute(cmd: Command) {
                this.commands.push(cmd);
                cmd.execute();
            }
        }
    
        export class Receiver {
            public action(): void {
                console.log("action is being called!");
            }
        }
    }
    

    核心:

    • Command:抽象命令,具有执行接口
    • ConcreteCommand:具体命令,实现具体接口,调用接收者的功能来完成命令要执行的操作。
    • Receiver:接收者,真正执行命令的对象,任何对象都可以成为接收者,只要实现了对应接口。
    • Invoker:唤起执行命令的对象,他持有命令对象数组

    优点:

    • 解耦调用者和执行者
    • 可以组合命令
    • 可以扩展,对命令进行撤销等

    解释器模式

    namespace InterpreterPattern {
        export class Context {
        }
    
        export interface AbstractExpression {
            interpret(context: Context): void;
        }
    
        export class TerminalExpression implements AbstractExpression {
            public interpret(context: Context): void {
                console.log("`interpret` method of TerminalExpression is being called!");
            }
        }
    
        export class NonterminalExpression implements AbstractExpression {
    
            public interpret(context: Context): void {
                console.log("`interpret` method of NonterminalExpression is being called!");
            }
        }
    }
    

    意图:给定一个语言,定义它的文法的一种表示,并定义一个解释器,这个解释器使用该表示来解释语言中的句子。

    核心:

    • AbstractExpression:抽象表达式,声明了一个表达式需要实现的接口。
    • TerminalExpression:实现了抽象表达式角色所要求的接口,主要是一个interpret()方法;文法中的每一个终结符都有一个具体终结表达式与之相对应。比如有一个简单的公式R=R1+R2,在里面R1和R2就是终结符,对应的解析R1和R2的解释器就是终结符表达式。
    • NonterminalExpression:文法中的每一条规则都需要一个具体的非终结符表达式,非终结符表达式一般是文法中的运算符或者其他关键字,比如公式R=R1+R2中,“+"就是非终结符,解析“+”的解释器就是一个非终结符表达式。
    • Context:上下文,用来存放文法中各个终结符所对应的具体值。

    感觉用不上,而且没有具体例子也比较晦涩(Interpreter Pattern)

    迭代器模式

    namespace IteratorPattern {
        export interface Iterator {
    
            next(): any;
            hasNext(): boolean;
        }
    
        export interface Aggregator {
            createIterator(): Iterator;
        }
    
        export class ConcreteIterator implements Iterator {
            private collection: any[] = [];
            private position: number = 0;
    
            constructor(collection: any[]) {
                this.collection = collection;
            }
    
            public next(): any {
                // Error handling is left out
                var result = this.collection[this.position];
                this.position += 1;
                return result;
            }
    
            public hasNext(): boolean {
                return this.position < this.collection.length;
            }
        }
    
        export class Numbers implements Aggregator {
            private collection: number[] = [];
    
            constructor(collection: number[]) {
                this.collection = collection;
            }
            public createIterator(): Iterator {
                return new ConcreteIterator(this.collection);
            }
        }
    }
    

    意图:提供一种方法顺序访问一个聚合对象中各个元素, 而又不需暴露该对象的内部表示。
    例子里提供的就是一种正序访问方法,但实际上这个访问顺序是我们可以自己定义的。
    所以迭代器就是一种接口,为各种不同的数据结构提供统一的访问机制。任何数据结构只要部署 Iterator 接口,就可以完成遍历操作。也就是可以供es6中的 for...of语法消费。
    更多js相关的迭代器知识可以看:Iterator 和 for...of 循环

    中介者模式

    namespace MediatorPattern {
        export interface Mediator {
            send(msg: string, colleague: Colleague): void;
        }
    
        export class Colleague {
            public mediator: Mediator;
    
            constructor(mediator: Mediator) {
                this.mediator = mediator;
            }
    
            public send(msg: string): void {
                throw new Error("Abstract Method!");
            }
    
            public receive(msg: string): void {
                throw new Error("Abstract Method!");
            }
        }
    
        export class ConcreteColleagueA extends Colleague {
            constructor(mediator: Mediator) {
                super(mediator);
            }
    
            public send(msg: string): void {
                this.mediator.send(msg, this);
            }
    
            public receive(msg: string): void {
                console.log(msg, "`receive` of ConcreteColleagueA is being called!");
            }
        }
    
        export class ConcreteColleagueB extends Colleague {
            constructor(mediator: Mediator) {
                super(mediator);
            }
    
            public send(msg: string): void {
                this.mediator.send(msg, this);
            }
    
            public receive(msg: string): void {
                console.log(msg, "`receive` of ConcreteColleagueB is being called!");
            }
        }
    
        export class ConcreteMediator implements Mediator {
            public concreteColleagueA: ConcreteColleagueA;
            public concreteColleagueB: ConcreteColleagueB;
    
            public send(msg: string, colleague: Colleague): void {
                if (this.concreteColleagueA === colleague) {
                    this.concreteColleagueB.receive(msg);
                } else {
                    this.concreteColleagueA.receive(msg);
                }
            }
        }
    }
    

    意图:用一个中介对象来封装一系列的对象交互。中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。

    核心:

    • Mediator:抽象中介者,定义对象间的中介交换方法。
    • ConcreteMediator:具体中介者,实现对象间的中介交换方法。
    • Colleague:抽象同事角色,定义同事角色和中介者交互的方法,持有中介者。
    • ConcreteColleagueB:具体,实现和中介者的交互。

    demo:

    function show() : void {
        var cm: MediatorPattern.ConcreteMediator = new MediatorPattern.ConcreteMediator(),
            c1: MediatorPattern.ConcreteColleagueA = new MediatorPattern.ConcreteColleagueA(cm),
            c2: MediatorPattern.ConcreteColleagueB = new MediatorPattern.ConcreteColleagueB(cm);
    
        cm.concreteColleagueA = c1;
        cm.concreteColleagueB = c2;
    
        c1.send("`send` of ConcreteColleagueA is being called!");
        c2.send("`send` of ConcreteColleagueB is being called!");
    
    }
    

    备忘录模式

    namespace MementoPattern {
        export class State {
            private str: string;
    
            constructor(str: string) {
                this.str = str;
            }
    
            get Str() : string {
                return this.str;
            }
    
            set Str(str: string) {
                this.str = str;
            }
        }
    
        export class Originator {
            private state: State;
    
            constructor(state: State) {
                this.state = state;
            }
    
            get State(): State {
                return this.state;
            }
    
            set State(state: State) {
                console.log("State :: ", state);
                this.state = state;
            }
    
            public createMemento(): Memento {
                console.log("creates a memento with a given state!");
                return new Memento(this.state);
            }
    
            public setMemento(memento: Memento) {
                console.log("sets the state back");
                this.State = memento.State;
            }
        }
    
        export class Memento {
            private state: State;
    
            constructor (state: State) {
                this.state = state;
            }
    
            get State(): State {
                console.log("get memento's state");
                return this.state;
            }
        }
    
        export class CareTaker {
            private memento: Memento;
    
            get Memento(): Memento {
                return this.memento;
            }
    
            set Memento(memento: Memento) {
                this.memento = memento;
            }
        }
    }
    

    意图:在不破坏封装性的前提下,捕获一个对象的内部状态,并在该对象之外保存这个状态。这样以后就可将该对象恢复到保存的状态。

    核心:

    • Originator(发起人):负责创建一个备忘录Memento,用以记录当前时刻自身的内部状态,并可使用备忘录恢复内部状态。Originator可以根据需要决定Memento存储自己的哪些内部状态。
    • Memento(备忘录):负责存储Originator对象的内部状态,并可以防止Originator以外 的其他对象访问备忘录。允许它访问返回到先前状态所需要的所有数据。
    • Caretaker(管理者):管理备忘录Memento,不能对Memento的内容进行访问或者操作。

    例子:

    function show() : void {
        var state: MementoPattern.State = new MementoPattern.State("... State "),
            originator: MementoPattern.Originator = new MementoPattern.Originator(state),
            careTaker: MementoPattern.CareTaker = new MementoPattern.CareTaker();
    
        careTaker.Memento = originator.createMemento();
        originator.State = new MementoPattern.State("something else...");
    
        originator.setMemento(careTaker.Memento);
    }
    

    以保存游戏进度为例,在游戏角色大战Boss前将该角色的状态存储,与Boss作战后角色的各项能力会下降,如果没有通关,则可利用备忘录进行恢复到战前状态。

    观察者模式

    namespace ObserverPattern {
        export class Subject {
            private observers: Observer[] = [];
    
            public register(observer: Observer): void {
                console.log(observer, "is pushed!");
                this.observers.push(observer);
            }
    
            public unregister(observer: Observer): void {
                var n: number = this.observers.indexOf(observer);
                console.log(observer, "is removed");
                this.observers.splice(n, 1);
            }
    
            public notify(): void {
                console.log("notify all the observers", this.observers);
                var i: number
                  , max: number;
    
                for (i = 0, max = this.observers.length; i < max; i += 1) {
                    this.observers[i].notify();
                }
            }
        }
    
        export class ConcreteSubject extends Subject {
            private subjectState: number;
    
            get SubjectState(): number {
                return this.subjectState;
            }
    
            set SubjectState(subjectState: number) {
                this.subjectState = subjectState;
            }
        }
    
        export class Observer {
            public notify(): void {
                throw new Error("Abstract Method!");
            }
        }
    
        export class ConcreteObserver extends Observer {
            private name: string;
            private state: number;
            private subject: ConcreteSubject;
    
            constructor (subject: ConcreteSubject, name: string) {
                super();
                console.log("ConcreteObserver", name, "is created!");
                this.subject = subject;
                this.name = name;
            }
    
            public notify(): void {
                console.log("ConcreteObserver's notify method");
                console.log(this.name, this.state);
                this.state = this.subject.SubjectState;
            }
    
            get Subject(): ConcreteSubject {
                return this.subject;
            }
    
            set Subject(subject: ConcreteSubject) {
                this.subject = subject;
            }
        }
    }
    

    意图:定义对象间的一种一对多的依赖关系,当一个对象的状态发生改变时, 所有依赖于它的对象都得到通知并被自动更新。

    也叫发布订阅模式,这在前端中非常常见,比如浏览器的addEventListener或者node中的EventEmitter,代码很好理解,不用多做其他解释。

    状态模式

    namespace StatePattern {
        export interface State {
            handle(context: Context): void;
        }
    
        export class ConcreteStateA implements State {
            public handle(context: Context): void {
                console.log("`handle` method of ConcreteStateA is being called!");
                context.State = new ConcreteStateB();
            }
        }
    
        export class ConcreteStateB implements State {
            public handle(context: Context): void {
                console.log("`handle` method of ConcreteStateB is being called!");
                context.State = new ConcreteStateA();
            }
        }
    
        export class Context {
            private state: State;
    
            constructor(state: State) {
                this.state = state;
            }
    
            get State(): State {
                return this.state;
            }
    
            set State(state: State) {
                this.state = state;
            }
    
            public request(): void {
                console.log("request is being called!");
                this.state.handle(this);
            }
        }
    }
    

    意图:允许一个对象在其内部状态改变时改变它的行为。

    适用性: 一个对象的行为取决于它的状态, 并且它必须在运行时刻根据状态改变它的行为。

    核心:Context对象包含一个State状态对象。而Context真正执行操作时,是State状态对象在执行this.state.handle(this);。并且当状态执行完具体操作之后,他会将状态切换至下一个状态。这个时候Context对象再次调用时,它执行的操作会切换至下一个状态的操作。

    例子:

    class Kaideng implements State {
        public handle(context: Context): void {
            console.log("关灯");
            context.State = new Guandeng();
        }
    }
    
    class Guandeng implements State {
        public handle(context: Context): void {
            console.log("开灯");
            context.State = new Kaideng();
        }
    }
    
    class Light {
        private state: State;
    
        constructor(state: State) {
            this.state = state;
        }
    
        get State(): State {
            return this.state;
        }
    
        set State(state: State) {
            this.state = state;
        }
    
        public toggle(): void {
            console.log("request is being called!");
            this.state.handle(this);
        }
    }
    
    const light = new Light(new Guandeng());
    light.toggle();
    light.toggle();
    

    策略模式

    namespace StrategyPattern {
        export interface Strategy {
            execute(): void;
        }
    
        export class ConcreteStrategy1 implements Strategy {
            public execute(): void {
                console.log("`execute` method of ConcreteStrategy1 is being called");
            }
        }
    
        export class ConcreteStrategy2 implements Strategy {
            public execute(): void {
                console.log("`execute` method of ConcreteStrategy2 is being called");
            }
        }
    
        export class ConcreteStrategy3 implements Strategy {
            public execute(): void {
                console.log("`execute` method of ConcreteStrategy3 is being called");
            }
        }
    
        export class Context {
            private strategy: Strategy;
    
            constructor(strategy: Strategy) {
                this.strategy = strategy;
            }
    
            public executeStrategy(): void {
                this.strategy.execute();
            }
        }
    }
    

    意图:定义一系列的算法,把它们一个个封装起来, 并且使它们可相互替换。本模式使得算法可独立于使用它的客户而变化。

    核心:
    “策略”提供了一种用多个行为中的一个行为来配置一个类的方法。


    例子

    模版方法模式

    namespace TemplateMethodPattern {
        export class AbstractClass {
            public method1(): void {
                throw new Error("Abstract Method");
            }
    
            public method2(): void {
                throw new Error("Abstract Method");
            }
    
            public method3(): void {
                throw new Error("Abstract Method");
            }
    
            public templateMethod(): void {
                console.log("templateMethod is being called");
                this.method1();
                this.method2();
                this.method3();
            }
        }
    
        export class ConcreteClass1 extends AbstractClass {
            public method1(): void {
                console.log("method1 of ConcreteClass1");
            }
    
            public method2(): void {
                console.log("method2 of ConcreteClass1");
            }
    
            public method3(): void {
                console.log("method3 of ConcreteClass1");
            }
        }
    
        export class ConcreteClass2 extends AbstractClass {
            public method1(): void {
                console.log("method1 of ConcreteClass2");
            }
    
            public method2(): void {
                console.log("method2 of ConcreteClass2");
            }
    
            public method3(): void {
                console.log("method3 of ConcreteClass2");
            }
        }
    }
    

    核心:定义一个操作中的算法的骨架,而将一些步骤延迟到子类中。Template Method使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤。

    优点:封装不变部分,扩展可变部分。

    访问者模式

    namespace VisitorPattern {
        export interface Visitor {
            visitConcreteElement1(concreteElement1: ConcreteElement1): void;
            visitConcreteElement2(concreteElement2: ConcreteElement2): void;
        }
    
        export class ConcreteVisitor1 implements Visitor {
            public visitConcreteElement1(concreteElement1: ConcreteElement1): void {
                console.log("`visitConcreteElement1` of ConcreteVisitor1 is being called!");
            }
    
            public visitConcreteElement2(concreteElement2: ConcreteElement2): void {
                console.log("`visitConcreteElement2` of ConcreteVisitor1 is being called!");
            }
        }
    
        export class ConcreteVisitor2 implements Visitor {
            public visitConcreteElement1(concreteElement1: ConcreteElement1): void {
                console.log("`visitConcreteElement1` of ConcreteVisitor2 is being called!");
            }
    
            public visitConcreteElement2(concreteElement2: ConcreteElement2): void {
                console.log("`visitConcreteElement2` of ConcreteVisitor2 is being called!");
            }
        }
    
    
        export interface Element {
            operate(visitor: Visitor): void;
        }
    
        export class ConcreteElement1 implements Element {
            public operate(visitor: Visitor): void {
                console.log("`operate` of ConcreteElement1 is being called!");
                visitor.visitConcreteElement1(this);
            }
        }
    
        export class ConcreteElement2 implements Element {
            public operate(visitor: Visitor): void {
                console.log("`operate` of ConcreteElement2 is being called!");
                visitor.visitConcreteElement2(this);
            }
        }
    
        export class Objs {
            private elements: Element[] = [];
    
            public attach(e: Element): void {
                this.elements.push(e);
            }
    
            public detach(e: Element): void {
                var index = this.elements.indexOf(e);
                this.elements.splice(index, 1);
            }
    
            public operate(visitor: Visitor): void {
                var i = 0,
                    max = this.elements.length;
    
                for(; i < max; i += 1) {
                    this.elements[i].operate(visitor);
                }
            }
        }
    
    }
    

    意图:表示一个作用于某对象结构中的各元素的操作。它使你可以在不改变各元素的类的前提下定义作用于这些元素的新操作。

    核心:

    • Visitor:为该对象结构中 ConcreteElement的每一个类声明一个 Visit操作。
    • ConcreteVisitor:实现每个由 Visitor声明的操作。
    • ConcreteElement:实现operate方法,该操作以一个访问者为参数,然后具体地调用访问者的方法。
    • ObjectStructure:对应Objs,可以对元素进行管理,枚举元素等。

    简记:不同的人对不同的事做不同的操作。


    例子

    为什么要重学设计模式?

    不同的阶段看设计模式会有不同的感悟,并且有很多设计模式即使然在懂了也不是能马上运用在项目中的,所以需要不停地反复学习,才会有更熟练的感觉。

    相关文章

      网友评论

          本文标题:typescript设计模式 —— 生产型模式和结构型模式

          本文链接:https://www.haomeiwen.com/subject/hscvshtx.html