美文网首页机器学习
如何自动化进行特征工程

如何自动化进行特征工程

作者: 生信阿拉丁 | 来源:发表于2021-06-14 21:48 被阅读0次

作者:童蒙
编辑:angelica

工业界流传者这么一句话:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。

特征工程就是将原始的数据处理成合格的数据输入的一个过程,但是这个过程是很耗时、很繁琐、很无聊,但是又很重要的一个过程。使用Featuretools这个工具,可以很自动化地进行特征工程的操作。它擅长将时间和关系的数据集转换成机器学习的特征矩阵。下面我们来看看吧。

一、安装

使用pip轻松安装Featuretools。
pip install featuretools

可以使用清华的源来加速安装
pip install featuretools -i https://pypi.tuna.tsinghua.edu.cn/simple

二、使用

官方推荐有两种形式,一种是分步定义,一种是entityset定义

分步定义

首先看代码

import featuretools as ft
data = ft.demo.load_mock_customer()
customers_df = data["customers"]
sessions_df = data["sessions"]
transactions_df = data["transactions"]

导入示例数据,并且存成三个dataframe,然后定义entities

entities = {
       "customers" : (customers_df, "customer_id"),
       "sessions" : (sessions_df, "session_id", "session_start"),
       "transactions" : (transactions_df, "transaction_id", "transaction_time")
    }

定义数据矩阵之间的关系

relationships = [("sessions", "session_id", "transactions", "session_id"),
                     ("customers", "customer_id", "sessions", "customer_id")]

运行Deep Feature ,进行特征生成,针对customer这个表格进行特征生成

feature_matrix_customers, features_defs = ft.dfs(entities=entities,
                                                     relationships=relationships,
                                                     target_entity="customers") 

通过修改target_entity这个参数来调整生成的表格。

使用entityset定义

也可以使用entityset,首先看代码

import featuretools as ft
data = ft.demo.load_mock_customer()
transactions_df = data["transactions"].merge(data["sessions"]).merge(data["customers"])
products_df = data["products"]

生成一个entityset

es = ft.EntitySet(id="customer_data")

添加一个实体

es = es.entity_from_dataframe(entity_id="transactions",
                              dataframe=transactions_df,
                              index="transaction_id",
                              time_index="transaction_time",
                             variable_types={"product_id": ft.variable_types.Categorical,
                                               "zip_code": ft.variable_types.ZIPCode})

添加另一个实体

es = es.entity_from_dataframe(entity_id="products",
                                  dataframe=products_df,
                                  index="product_id")

添加关系

new_relationship = ft.Relationship(es["products"]["product_id"],
                                   es["transactions"]["product_id"])

生成新的特征

feature_matrix, feature_defs = ft.dfs(entityset=es,
                                      target_entity="products")

此外,可以用normalize_entity()来对原始表格产生一个新的entity。具体的见官方说明就可以啦。

结语

特征工程包含的内容有很多,今天只是介绍了一个方面:特征的自动化生成,请大家后续继续关注我们的其他推文。

参考文献

相关文章

  • 如何自动化进行特征工程

    作者:童蒙编辑:angelica 工业界流传者这么一句话:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个...

  • 数据挖掘2

    特征工程目标 对于特征工程进行进一步分析,并对于数据进行处理 完成对特征工程的分析,并对数据进行一些图标或者文字总...

  • Feature Engineering

    介绍如何在R语言中进行特征工程(未完待续)建议在R语言中亲自实践 总述 特征工程可以帮助我们提升模型的表现,但是这...

  • Task3特征工程

    day3:今天进行的是特征工程部分,也就是对一些特征进行处理,构造适合各种模型的数据。 特征工程的目标 对于特征进...

  • 2019-03-04

    第1 和 2 章 问题 : 对于不同的特征该如何进行特征工程 ? 模型评估中不同的指标在什么场景中 ?

  • 数据挖掘实践任务2

    任务2: 特征工程(2天) 特征衍生特征挑选:分别用IV值和随机森林等进行特征选择……以及你能想到特征工程处理 结...

  • 07 特征工程 - 特征降维 - PCA

    06 特征工程 - 特征选择 特征降维必须在特征选择做完以后才能进行。 当特征选择完成后,可以直接可以进行训练模型...

  • 2019-01-07特征工程文章

    使用sklearn优雅地进行数据挖掘 使用sklearn做单机特征工程 特征工程到底是什么? Kaggle入门,看...

  • 特征工程

    1. 介绍 特征工程是对原始数据进行一系列工程处理,将其提炼为特征,作为输入。是一个表示和展示数据的过程,特征工程...

  • 特征工程之特征标准化(Normalization)

    特征工程,顾名思义,是对原始数据进行一系列工程处理,将其提炼为特征,作为算法和模型的输入。从本质上来说,特征工程是...

网友评论

    本文标题:如何自动化进行特征工程

    本文链接:https://www.haomeiwen.com/subject/hxzoeltx.html