Similarity
- Break down the array and solve for the subproblems
Three Implementation
- Merge sort(guarantee O(nlogn))
- BST(worst case O(n^2). Consider balanced-tree for insertion)
- BIT(O(nlogn))
315 Count of Smaller Numbers After Self
You are given an integer array nums and you have to return a new counts array. The counts array has the property where counts[i] is the number of smaller elements to the right of nums[i].
Example:
Input: [5,2,6,1]
Output: [2,1,1,0]
Explanation:
To the right of 5 there are 2 smaller elements (2 and 1).
To the right of 2 there is only 1 smaller element (1).
To the right of 6 there is 1 smaller element (1).
To the right of 1 there is 0 smaller element.
BST Solution
- Node属性有:val表示Node的值,sum表示它左子树上总共的number,dup表示这个Node相同值的总共个数。
- 根据给的数组从后往前建树,对每个插入的数,将插入的path上所有turn right的Node的sum和dup相加得到新Node的smaller numbers after self的个数,即把新插入的点后面的所有比它小的Node中,比Node小的数的个数和Node自身的dup个数相加。
public class Solution {
class Node {
Node left, right;
int val, sum, dup = 1;
public Node(int v, int s) {
val = v;
sum = s;
}
}
public List<Integer> countSmaller(int[] nums) {
Integer[] ans = new Integer[nums.length];
Node root = null;
for (int i = nums.length - 1; i >= 0; i--) {
root = insert(nums[i], root, ans, i, 0);
}
return Arrays.asList(ans);
}
private Node insert(int num, Node node, Integer[] ans, int i, int preSum) {
if (node == null) {
node = new Node(num, 0);
ans[i] = preSum;
} else if (node.val == num) {
node.dup++;
ans[i] = preSum + node.sum;
} else if (node.val > num) {
node.sum++;
node.left = insert(num, node.left, ans, i, preSum);
} else {
node.right = insert(num, node.right, ans, i, preSum + node.dup + node.sum);
}
return node;
}
}
MergeSort Solution
- MergeSort-based solution is a standard way to solve problems related to inverse numbers.
- 把一个array对半分为left array和right array,有一个rightcount,当merge时加入一个右子数组的数,说明左子数组中的每个数都有一个比它小的数在右边,所以rightcount加一;当merge时加入一个左子数组的数,就加上当前的rightcount
public class Solution {
public List<Integer> countSmaller(int[] nums) {
int[] count = new int[nums.length];
int[] indexes = new int[nums.length];
for (int i=0; i<indexes.length; i++) {
indexes[i] = i;
}
mergeSort(nums, count, indexes, 0, nums.length - 1);
List<Integer> res = new ArrayList<Integer>();
for (int i=0; i<nums.length; i++) {
res.add(count[i]);
}
return res;
}
public void mergeSort(int[] nums, int[] count, int[] indexes, int start, int end) {
if (end <= start) return;
int mid = (start + end) / 2;
mergeSort(nums, count, indexes, start, mid);
mergeSort(nums, count, indexes, mid + 1, end);
merge(nums, count, indexes, start, end);
}
public void merge(int[] nums, int[] count, int[] indexes, int start, int end) {
int mid = (start + end) / 2;
int left_index = start;
int right_index = mid+1;
int rightcount = 0;
int[] new_indexes = new int[end - start + 1];
int sort_index = 0;
while(left_index <= mid && right_index <= end){
if(nums[indexes[right_index]] < nums[indexes[left_index]]){
new_indexes[sort_index] = indexes[right_index];
rightcount++;
right_index++;
}else{
new_indexes[sort_index] = indexes[left_index];
count[indexes[left_index]] += rightcount;
left_index++;
}
sort_index++;
}
while(left_index <= mid){
new_indexes[sort_index] = indexes[left_index];
count[indexes[left_index]] += rightcount;
left_index++;
sort_index++;
}
while(right_index <= end){
new_indexes[sort_index++] = indexes[right_index++];
}
for(int i = start; i <= end; i++){
indexes[i] = new_indexes[i - start];
}
}
}
BIT Solution
- Both update() and query() operation have O(n) time complexity.
- Space complexity: O(n)
- Tree length is determined by maximum value of nums. Use long instead of integer in case it overflows
- Pre-process the input array to guarantee no negative element leading to an out of index exception
public class Solution {
public List<Integer> countSmaller(int[] nums) {
List<Integer> res = new ArrayList<Integer>();
if (nums == null || nums.length == 0) return res;
int min = Integer.MAX_VALUE;
int max = Integer.MIN_VALUE;
for (int num : nums) {
min = Math.min(min, num);
}
int[] nums2 = new int[nums.length];
for (int i=0; i<nums.length; i++) {
nums2[i] = nums[i] - min + 1;
max = Math.max(max, nums2[i]);
}
int[] tree = new int[max + 1];
for (int i=nums2.length-1; i>=0; i--) {
res.add(0, query(nums2[i] - 1, tree));
update(nums2[i], tree);
}
return res;
}
private int query(int i, int[] tree) {
int num = 0;
while (i > 0) {
num += tree[i];
i -= i & (-i);
}
return num;
}
private void update(int i, int[] tree) {
while (i < tree.length) {
tree[i] ++;
i += i & (-i);
}
}
}
493 Reverse Pairs
BST Solution
- 建树时,如果插入的新的值等于一个节点的值,增加dup;如果小于这个节点的值,把这个节点的less增加一并对它的左子节点插入这个值
- search时,要找小于target(target = (double) nums[i] / 2)的值,当找到节点的值等于target,直接加上less即小于该节点的节点个数;当找到的节点的值大于target,往左子树找;当找到的节点的值小于target,加上该节点的less并往右子树中找满足要求的节点
- 对sorted array(worst case)会超时
class Solution {
public int reversePairs(int[] nums) {
Node root = null;
int cnt = 0;
for (int i=nums.length-1; i>=0; i--) {
cnt = search(cnt, root, nums[i] / 2.0);
root = buildTree(nums[i], root);
}
return cnt;
}
private Node buildTree(int val, Node node) {
if (node == null) return new Node(val);
if (node.val == val) {
node.dup ++;
}
else if (node.val > val) {
node.less ++;
node.left = buildTree(val, node.left);
}
else {
node.right = buildTree(val, node.right);
}
return node;
}
private int search(int cnt, Node node, double target) {
if (node == null) return cnt;
if (target < node.val) {
return search(cnt, node.left, target);
}
else if (target == node.val) {
return cnt + node.less;
}
else {
return search(cnt + node.less + node.dup, node.right, target);
}
}
}
class Node {
int val, less, dup;
Node left, right;
public Node(int _val) {
val = _val;
dup = 1;
}
}
MergeSort Solution
- 对每个右数组的数,如果它和左数组的nums[i]能够满足条件,那么它就能和左数组中第i+n(n>=0)元素满足条件。
- 用/2.0防止overflow
class Solution {
public int reversePairs(int[] nums) {
return mergeSort(nums, 0, nums.length - 1);
}
private int mergeSort(int[] nums, int start, int end) {
if (start >= end) return 0;
int mid = start + (end - start) / 2;
int cnt = mergeSort(nums, start, mid) + mergeSort(nums, mid+1, end);
for (int i=start, j=mid+1; i<=mid; i++) {
while (j <= end && nums[i] / 2.0 > nums[j]) j ++;
cnt += j - (mid + 1);
}
Arrays.sort(nums, start, end + 1);
return cnt;
}
}
BIT Solution
- 把int array转换成long array防止overflow
- 两个operation:从左到右search(2 * num + 1)在sorted array中的位置,并query()比它大的数;update() index with the accumulated count
- Arrays.binarySearch : If the array contains multiple elements with the specified value, there is no guarantee which one will be found.
class Solution {
public int reversePairs(int[] nums) {
int n = nums.length;
// why long? 2 * nums[i] could overflow
// why this array? need its indexes to build bit
long[] nums2 = new long[n];
for (int i = 0; i < n; i++) {
nums2[i] = (long)nums[i];
}
Arrays.sort(nums2);
int[] bit = new int[n + 1];
int count = 0;
for (int i = 0; i < n; i++) {
int curr = nums[i];
int idx1 = Arrays.binarySearch(nums2, 2l * curr + 1);
count += query(bit, (idx1 < 0 ? -(idx1 + 1) : idx1) + 1);
int idx2 = Arrays.binarySearch(nums2, curr);
insert(bit, (idx2 < 0 ? -(idx2 + 1) : idx2) + 1, 1);
}
return count;
}
private int query(int[] bit, int x) {
int res = 0;
for (int i = x; i < bit.length; i += i & -i) {
res += bit[i];
}
return res;
}
private void insert(int[] bit, int x, int val) {
for (int i = x; i > 0; i -= i & -i) {
bit[i] += val;
}
}
}
Reference
General principles behind problems similar to "Reverse Pairs"
网友评论