美文网首页机器学习
[转载]机器学习(4):BP神经网络原理及其python实现

[转载]机器学习(4):BP神经网络原理及其python实现

作者: dopami | 来源:发表于2017-12-07 16:30 被阅读78次

    原文链接:http://www.cnblogs.com/cv-pr/p/7118548.html

    BP神经网络是深度学习的重要基础,它是深度学习的重要前行算法之一,因此理解BP神经网络原理以及实现技巧非常有必要。接下来,我们对原理和实现展开讨论。

    1.原理

    有空再慢慢补上,请先参考老外一篇不错的文章:A Step by Step Backpropagation Example

    激活函数参考:深度学习常用激活函数之— Sigmoid & ReLU & Softmax

    浅显易懂的初始化:CS231n课程笔记翻译:神经网络笔记 2

    有效的Trick:神经网络训练中的Tricks之高效BP(反向传播算法)

    通过简单演示BPNN的计算过程:一文弄懂神经网络中的反向传播法——BackPropagation

    2.实现----Batch随机梯度法

    这里实现了层数可定义的BP神经网络,可通过参数net_struct进行定义网络结果,如定义只有输出层,没有隐藏层的网络结构,激活函数为”sigmoid",学习率,可如下定义

    net_struct = [[10,"sigmoid",0.01]]#网络结构

    如定义一层隐藏层为100个神经元,再接一层隐藏层为50个神经元,输出层为10个神经元的网络结构,如下

    net_struct = [[100,"sigmoid",0.01],[50,"sigmoid",0.01],[10,"sigmoid",0.01]]#网络结构

    码农最爱的实现如下:

    # # encoding=utf8

    '''

    Created on 2017-7-3

    @author: Administrator

    '''

    import random

    import pandas as pd

    import numpy as np

    from matplotlib import pyplot as plt

    from sklearn.model_selection import train_test_split as ttsplit

    class LossFun:

    def __init__(self, lf_type="least_square"):

    self.name = "loss function"

    self.type = lf_type

    def cal(self, t, z):

    loss = 0

    if self.type == "least_square":

    loss = self.least_square(t, z)

    return loss

    def cal_deriv(self, t, z):

    delta = 0

    if self.type == "least_square":

    delta = self.least_square_deriv(t, z)

    return delta

    def least_square(self, t, z):

    zsize = z.shape

    sample_num = zsize[1]

    return np.sum(0.5 * (t - z) * (t - z) * t) / sample_num

    def least_square_deriv(self, t, z):

    return z - t

    class ActivationFun:

    '''

    激活函数

    '''

    def __init__(self, atype="sigmoid"):

    self.name = "activation function library"

    self.type = atype;

    def cal(self, a):

    z = 0

    if self.type == "sigmoid":

    z = self.sigmoid(a)

    elif self.type == "relu":

    z = self.relu(a)

    return z

    def cal_deriv(self, a):

    z = 0

    if self.type == "sigmoid":

    z = self.sigmoid_deriv(a)

    elif self.type == "relu":

    z = self.relu_deriv(a)

    return z

    def sigmoid(self, a):

    return 1 / (1 + np.exp(-a))

    def sigmoid_deriv(self, a):

    fa = self.sigmoid(a)

    return fa * (1 - fa)

    def relu(self, a):

    idx = a <= 0

    a[idx] = 0.1 * a[idx]

    return a  # np.maximum(a, 0.0)

    def relu_deriv(self, a):

    # print a

    a[a > 0] = 1.0

    a[a <= 0] = 0.1

    # print a

    return a

    class Layer:

    '''

    神经网络层

    '''

    def __init__(self, num_neural, af_type="sigmoid", learn_rate=0.5):

    self.af_type = af_type  # active function type

    self.learn_rate = learn_rate

    self.num_neural = num_neural

    self.dim = None

    self.W = None

    self.a = None

    self.X = None

    self.z = None

    self.delta = None

    self.theta = None

    self.act_fun = ActivationFun(self.af_type)

    def fp(self, X):

    '''

    Foward Propagation

    '''

    self.X = X

    xsize = X.shape

    self.dim = xsize[0]

    self.num = xsize[1]

    if self.W == None:

    # self.W = np.random.random((self.dim, self.num_neural))-0.5

    # self.W = np.random.uniform(-1,1,size=(self.dim,self.num_neural))

    if(self.af_type == "sigmoid"):

    self.W = np.random.normal(0, 1, size=(self.dim, self.num_neural)) / np.sqrt(self.num)

    elif(self.af_type == "relu"):

    self.W = np.random.normal(0, 1, size=(self.dim, self.num_neural)) * np.sqrt(2.0 / self.num)

    if self.theta == None:

    # self.theta = np.random.random((self.num_neural, 1))-0.5

    # self.theta = np.random.uniform(-1,1,size=(self.num_neural,1))

    if(self.af_type == "sigmoid"):

    self.theta = np.random.normal(0, 1, size=(self.num_neural, 1)) / np.sqrt(self.num)

    elif(self.af_type == "relu"):

    self.theta = np.random.normal(0, 1, size=(self.num_neural, 1)) * np.sqrt(2.0 / self.num)

    # calculate the foreward a

    self.a = (self.W.T).dot(self.X)

    ###calculate the foreward z####

    self.z = self.act_fun.cal(self.a)

    return self.z

    def bp(self, delta):

    '''

    Back Propagation

    '''

    self.delta = delta * self.act_fun.cal_deriv(self.a)

    self.theta = np.array([np.mean(self.theta - self.learn_rate * self.delta, 1)]).T  # 求所有样本的theta均值

    dW = self.X.dot(self.delta.T) / self.num

    self.W = self.W - self.learn_rate * dW

    delta_out = self.W.dot(self.delta);

    return delta_out

    class BpNet:

    '''

    BP神经网络

    '''

    def __init__(self, net_struct, stop_crit, max_iter, batch_size=10):

    self.name = "net work"

    self.net_struct = net_struct

    if len(self.net_struct) == 0:

    print "no layer is specified!"

    return

    self.stop_crit = stop_crit

    self.max_iter = max_iter

    self.batch_size = batch_size

    self.layers = []

    self.num_layers = 0;

    # 创建网络

    self.create_net(net_struct)

    self.loss_fun = LossFun("least_square");

    def create_net(self, net_struct):

    '''

    创建网络

    '''

    self.num_layers = len(net_struct)

    for i in range(self.num_layers):

    self.layers.append(Layer(net_struct[i][0], net_struct[i][1], net_struct[i][2]))

    def train(self, X, t, Xtest=None, ttest=None):

    '''

    训练网络

    '''

    eva_acc_list = []

    eva_loss_list = []

    xshape = X.shape;

    num = xshape[0]

    dim = xshape[1]

    for k in range(self.max_iter):

    # i = random.randint(0,num-1)

    idxs = random.sample(range(num), self.batch_size)

    xi = np.array([X[idxs, :]]).T[:, :, 0]

    ti = np.array([t[idxs, :]]).T[:, :, 0]

    # 前向计算

    zi = self.fp(xi)

    # 偏差计算

    delta_i = self.loss_fun.cal_deriv(ti, zi)

    # 反馈计算

    self.bp(delta_i)

    # 评估精度

    if Xtest != None:

    if k % 100 == 0:

    [eva_acc, eva_loss] = self.test(Xtest, ttest)

    eva_acc_list.append(eva_acc)

    eva_loss_list.append(eva_loss)

    print "%4d,%4f,%4f" % (k, eva_acc, eva_loss)

    else:

    print "%4d" % (k)

    return [eva_acc_list, eva_loss_list]

    def test(self, X, t):

    '''

    测试模型精度

    '''

    xshape = X.shape;

    num = xshape[0]

    z = self.fp_eval(X.T)

    t = t.T

    est_pos = np.argmax(z, 0)

    real_pos = np.argmax(t, 0)

    corrct_count = np.sum(est_pos == real_pos)

    acc = 1.0 * corrct_count / num

    loss = self.loss_fun.cal(t, z)

    # print "%4f,loss:%4f"%(loss)

    return [acc, loss]

    def fp(self, X):

    '''

    前向计算

    '''

    z = X

    for i in range(self.num_layers):

    z = self.layers[i].fp(z)

    return z

    def bp(self, delta):

    '''

    反馈计算

    '''

    z = delta

    for i in range(self.num_layers - 1, -1, -1):

    z = self.layers[i].bp(z)

    return z

    def fp_eval(self, X):

    '''

    前向计算

    '''

    layers = self.layers

    z = X

    for i in range(self.num_layers):

    z = layers[i].fp(z)

    return z

    def z_score_normalization(x):

    mu = np.mean(x)

    sigma = np.std(x)

    x = (x - mu) / sigma;

    return x;

    def sigmoid(X, useStatus):

    if useStatus:

    return 1.0 / (1 + np.exp(-float(X)));

    else:

    return float(X);

    def plot_curve(data, title, lege, xlabel, ylabel):

    num = len(data)

    idx = range(num)

    plt.plot(idx, data, color="r", linewidth=1)

    plt.xlabel(xlabel, fontsize="xx-large")

    plt.ylabel(ylabel, fontsize="xx-large")

    plt.title(title, fontsize="xx-large")

    plt.legend([lege], fontsize="xx-large", loc='upper left');

    plt.show()

    if __name__ == "__main__":

    print ('This is main of module "bp_nn.py"')

    print("Import data")

    raw_data = pd.read_csv('./train.csv', header=0)

    data = raw_data.values

    imgs = data[0::, 1::]

    labels = data[::, 0]

    train_features, test_features, train_labels, test_labels = ttsplit(

    imgs, labels, test_size=0.33, random_state=23323)

    train_features = z_score_normalization(train_features)

    test_features = z_score_normalization(test_features)

    sample_num = train_labels.shape[0]

    tr_labels = np.zeros([sample_num, 10])

    for i in range(sample_num):

    tr_labels[i][train_labels[i]] = 1

    sample_num = test_labels.shape[0]

    te_labels = np.zeros([sample_num, 10])

    for i in range(sample_num):

    te_labels[i][test_labels[i]] = 1

    print train_features.shape

    print tr_labels.shape

    print test_features.shape

    print te_labels.shape

    stop_crit = 100  # 停止

    max_iter = 10000  # 最大迭代次数

    batch_size = 100  # 每次训练的样本个数

    net_struct = [[100, "relu", 0.01], [10, "sigmoid", 0.1]]  # 网络结构[[batch_size,active function, learning rate]]

    # net_struct = [[200,"sigmoid",0.5],[100,"sigmoid",0.5],[10,"sigmoid",0.5]]  网络结构[[batch_size,active function, learning rate]]

    bpNNCls = BpNet(net_struct, stop_crit, max_iter, batch_size);

    # train model

    [acc, loss] = bpNNCls.train(train_features, tr_labels, test_features, te_labels)

    # [acc, loss] = bpNNCls.train(train_features, tr_labels)

    print("training model finished")

    # create test data

    plot_curve(acc, "Bp Network Accuracy", "accuracy", "iter", "Accuracy")

    plot_curve(loss, "Bp Network Loss", "loss", "iter", "Loss")

    # test model

    [acc, loss] = bpNNCls.test(test_features, te_labels);

    print "test accuracy:%f" % (acc)

    实验数据为mnist数据集合,可从以下地址下载:https://github.com/WenDesi/lihang_book_algorithm/blob/master/data/train.csv

    a.使用sigmoid激活函数和net_struct = [10,"sigmoid"]的网络结构(可看作是softmax 回归),其校验精度和损失函数的变化,如下图所示:

    测试精度达到0.916017,效果还是不错的。但是随机梯度法,依赖于参数的初始化,如果初始化不好,会收敛缓慢,甚至有不理想的结果。

    b.使用sigmoid激活函数和net_struct =

    [200,"sigmoid",100,"sigmoid",10,"sigmoid"] 的网络结构(一个200的隐藏层,一个100的隐藏层,和一个10的输出层),其校验精度和损失函数的变化,如下图所示:

    其校验精度达到0.963636,比softmax要好不少。从损失曲线可以看出,加入隐藏层后,算法收敛要比无隐藏层的稳定。

    Make Change - Focus on Computer Vision and Pattern Recognition

    版权声明:本文为博主原创文章,未经博主允许不得转载

    分类:Deep Learning,MachineLearning

    标签:Deep Learning,机器学习,模式识别

    相关文章

      网友评论

        本文标题:[转载]机器学习(4):BP神经网络原理及其python实现

        本文链接:https://www.haomeiwen.com/subject/ikfjixtx.html