1.RunLoop概念
RunLoop是通过内部维护的事件循环(Event Loop)
来对事件/消息进行管理
的一个对象。
1、没有消息处理时,休眠已避免资源占用,由用户态切换到内核态(CPU-内核态和用户态)
2、有消息需要处理时,立刻被唤醒,由内核态切换到用户态
为什么main函数不会退出?
int main(int argc, char * argv[]) {
@autoreleasepool {
return UIApplicationMain(argc, argv, nil, NSStringFromClass([AppDelegate class]));
}
}
UIApplicationMain内部默认开启了主线程的RunLoop,并执行了一段无限循环的代码(不是简单的for循环或while循环)
//无限循环代码模式(伪代码)
int main(int argc, char * argv[]) {
BOOL running = YES;
do {
// 执行各种任务,处理各种事件
// ......
} while (running);
return 0;
}
UIApplicationMain函数一直没有返回,而是不断地接收处理消息以及等待休眠,所以运行程序之后会保持持续运行状态。
2.RunLoop的数据结构
NSRunLoop(Foundation)
是CFRunLoop(CoreFoundation)
的封装,提供了面向对象的API
RunLoop 相关的主要涉及五个类:
CFRunLoop
:RunLoop对象
CFRunLoopMode
:运行模式
CFRunLoopSource
:输入源/事件源
CFRunLoopTimer
:定时源
CFRunLoopObserver
:观察者
1、CFRunLoop
由pthread
(线程对象,说明RunLoop和线程是一一对应的)、currentMode
(当前所处的运行模式)、modes
(多个运行模式的集合)、commonModes
(模式名称字符串集合)、commonModelItems
(Observer,Timer,Source集合)构成
2、CFRunLoopMode
由name、source0、source1、observers、timers构成
3、CFRunLoopSource
分为source0和source1两种
-
source0:
即非基于port的,也就是用户触发的事件。需要手动唤醒线程,将当前线程从内核态切换到用户态
-
source1:
基于port的,包含一个 mach_port 和一个回调,可监听系统端口和通过内核和其他线程发送的消息,能主动唤醒RunLoop,接收分发系统事件。
具备唤醒线程的能力
4、CFRunLoopTimer
基于时间的触发器,基本上说的就是NSTimer。在预设的时间点唤醒RunLoop执行回调。因为它是基于RunLoop的,因此它不是实时的(就是NSTimer 是不准确的。 因为RunLoop只负责分发源的消息。如果线程当前正在处理繁重的任务,就有可能导致Timer本次延时,或者少执行一次)。
5、CFRunLoopObserver
监听以下时间点:CFRunLoopActivity
-
kCFRunLoopEntry
RunLoop准备启动 -
kCFRunLoopBeforeTimers
RunLoop将要处理一些Timer相关事件 -
kCFRunLoopBeforeSources
RunLoop将要处理一些Source事件 -
kCFRunLoopBeforeWaiting
RunLoop将要进行休眠状态,即将由用户态切换到内核态 -
kCFRunLoopAfterWaiting
RunLoop被唤醒,即从内核态切换到用户态后 -
kCFRunLoopExit
RunLoop退出 -
kCFRunLoopAllActivities
监听所有状态
6、各数据结构之间的联系
线程和RunLoop一一对应, RunLoop和Mode是一对多的,Mode和source、timer、observer也是一对多的3.RunLoop的Mode
关于Mode首先要知道一个RunLoop 对象中可能包含多个Mode,且每次调用 RunLoop 的主函数时,只能指定其中一个 Mode(CurrentMode)。切换 Mode,需要重新指定一个 Mode 。主要是为了分隔开不同的 Source、Timer、Observer,让它们之间互不影响。当RunLoop运行在Mode1上时,是无法接受处理Mode2或Mode3上的Source、Timer、Observer事件的
总共是有五种CFRunLoopMode
:
-
kCFRunLoopDefaultMode
:默认模式,主线程是在这个运行模式下运行 -
UITrackingRunLoopMode
:跟踪用户交互事件(用于 ScrollView 追踪触摸滑动,保证界面滑动时不受其他Mode影响) -
UIInitializationRunLoopMode
:在刚启动App时第进入的第一个 Mode,启动完成后就不再使用 -
GSEventReceiveRunLoopMode
:接受系统内部事件,通常用不到 -
kCFRunLoopCommonModes
:伪模式,不是一种真正的运行模式,是同步Source/Timer/Observer到多个Mode中的一种解决方案
4.RunLoop的实现机制
这张图在网上流传比较广。
RunLoop通过mach_msg()
函数接收、发送消息。它的本质是调用函数mach_msg_trap()
,相当于是一个系统调用,会触发内核状态切换。在用户态调用 mach_msg_trap()
时会切换到内核态;内核态中内核实现的mach_msg()
函数会完成实际的工作。
即基于port的source1,监听端口,端口有消息就会触发回调;而source0,要手动标记为待处理和手动唤醒RunLoop
Mach消息发送机制
大致逻辑为:
1、通知观察者 RunLoop 即将启动。
2、通知观察者即将要处理Timer事件。
3、通知观察者即将要处理source0事件。
4、处理source0事件。
5、如果基于端口的源(Source1)准备好并处于等待状态,进入步骤9。
6、通知观察者线程即将进入休眠状态。
7、将线程置于休眠状态,由用户态切换到内核态,直到下面的任一事件发生才唤醒线程。
- 一个基于 port 的Source1 的事件(图里应该是source0)。
- 一个 Timer 到时间了。
- RunLoop 自身的超时时间到了。
- 被其他调用者手动唤醒。
8、通知观察者线程将被唤醒。
9、处理唤醒时收到的事件。
- 如果用户定义的定时器启动,处理定时器事件并重启RunLoop。进入步骤2。
- 如果输入源启动,传递相应的消息。
- 如果RunLoop被显示唤醒而且时间还没超时,重启RunLoop。进入步骤2
10、通知观察者RunLoop结束。
5.RunLoop与NSTimer
一个比较常见的问题:滑动tableView时,定时器还会生效吗?
默认情况下RunLoop运行在kCFRunLoopDefaultMode
下,而当滑动tableView时,RunLoop切换到UITrackingRunLoopMode
,而Timer是在kCFRunLoopDefaultMode
下的,就无法接受处理Timer的事件。
怎么去解决这个问题呢?把Timer添加到UITrackingRunLoopMode上并不能解决问题,因为这样在默认情况下就无法接受定时器事件了。
所以我们需要把Timer同时添加到UITrackingRunLoopMode
和kCFRunLoopDefaultMode
上。
那么如何把timer同时添加到多个mode上呢?就要用到NSRunLoopCommonModes
了
[[NSRunLoop currentRunLoop] addTimer:timer forMode:NSRunLoopCommonModes];
Timer就被添加到多个mode上,这样即使RunLoop由kCFRunLoopDefaultMode
切换到UITrackingRunLoopMode
下,也不会影响接收Timer事件
6.RunLoop和线程
- 线程和RunLoop是一一对应的,其映射关系是保存在一个全局的 Dictionary 里
- 自己创建的线程默认是没有开启RunLoop的
1、怎么创建一个常驻线程?
1、为当前线程开启一个RunLoop(第一次调用 [NSRunLoop currentRunLoop]方法时实际是会先去创建一个RunLoop)
2、向当前RunLoop中添加一个Port/Source等维持RunLoop的事件循环(如果RunLoop的mode中一个item都没有,RunLoop会退出)
3、启动该RunLoop
@autoreleasepool {
NSRunLoop *runLoop = [NSRunLoop currentRunLoop];
[[NSRunLoop currentRunLoop] addPort:[NSMachPort port] forMode:NSDefaultRunLoopMode];
[runLoop run];
}
2、输出下边代码的执行顺序
NSLog(@"1");
dispatch_async(dispatch_get_global_queue(0, 0), ^{
NSLog(@"2");
[self performSelector:@selector(test) withObject:nil afterDelay:10];
NSLog(@"3");
});
NSLog(@"4");
- (void)test
{
NSLog(@"5");
}
答案是1423,test方法并不会执行。
原因是如果是带afterDelay的延时函数,会在内部创建一个 NSTimer,然后添加到当前线程的RunLoop中。也就是如果当前线程没有开启RunLoop,该方法会失效。
那么我们改成:
dispatch_async(dispatch_get_global_queue(0, 0), ^{
NSLog(@"2");
[[NSRunLoop currentRunLoop] run];
[self performSelector:@selector(test) withObject:nil afterDelay:10];
NSLog(@"3");
});
然而test方法依然不执行。
原因是如果RunLoop的mode中一个item都没有,RunLoop会退出。即在调用RunLoop的run方法后,由于其mode中没有添加任何item去维持RunLoop的时间循环,RunLoop随即还是会退出。
所以我们自己启动RunLoop,一定要在添加item后
dispatch_async(dispatch_get_global_queue(0, 0), ^{
NSLog(@"2");
[self performSelector:@selector(test) withObject:nil afterDelay:10];
[[NSRunLoop currentRunLoop] run];
NSLog(@"3");
});
3、怎样保证子线程数据回来更新UI的时候不打断用户的滑动操作?
当我们在子线程请求数据的同时滑动浏览当前页面,如果数据请求成功要切回主线程更新UI,那么就会影响当前正在滑动的体验。
我们就可以将更新UI事件放在主线程的NSDefaultRunLoopMode
上执行即可,这样就会等用户不再滑动页面,主线程RunLoop由UITrackingRunLoopMode
切换到NSDefaultRunLoopMode
时再去更新UI
[self performSelectorOnMainThread:@selector(reloadData) withObject:nil waitUntilDone:NO modes:@[NSDefaultRunLoopMode]];
7.为什么 NSTimer
有时候不好使?
因为创建的 NSTimer
默认是被加入到了 defaultMode
,所以当 Runloop
的 Mode
变化时,当前的 NSTimer
就不会工作了。
8.AFNetworking
中如何运用 Runloop
?
AFURLConnectionOperation
这个类是基于 NSURLConnection
构建的,其希望能在后台线程接收 Delegate
回调。为此 AFNetworking
单独创建了一个线程,并在这个线程中启动了一个 RunLoop
:
+ (void)networkRequestThreadEntryPoint:(id)__unused object {
@autoreleasepool {
[[NSThread currentThread] setName:@"AFNetworking"];
NSRunLoop *runLoop = [NSRunLoop currentRunLoop];
[runLoop addPort:[NSMachPort port] forMode:NSDefaultRunLoopMode];
[runLoop run];
}
}
+ (NSThread *)networkRequestThread {
static NSThread *_networkRequestThread = nil;
static dispatch_once_t oncePredicate;
dispatch_once(&oncePredicate, ^{
_networkRequestThread = [[NSThread alloc] initWithTarget:self selector:@selector(networkRequestThreadEntryPoint:) object:nil];
[_networkRequestThread start];
});
return _networkRequestThread;
}
RunLoop
启动前内部必须要有至少一个 Timer
/Observer
/Source
,所以 AFNetworking
在 [runLoop run]
之前先创建了一个新的 NSMachPort
添加进去了。通常情况下,调用者需要持有这个 NSMachPort (mach_port)
并在外部线程通过这个 port
发送消息到 loop
内;但此处添加 port
只是为了让 RunLoop
不至于退出,并没有用于实际的发送消息。
- (void)start {
[self.lock lock];
if ([self isCancelled]) {
[self performSelector:@selector(cancelConnection) onThread:[[self class] networkRequestThread] withObject:nil waitUntilDone:NO modes:[self.runLoopModes allObjects]];
} else if ([self isReady]) {
self.state = AFOperationExecutingState;
[self performSelector:@selector(operationDidStart) onThread:[[self class] networkRequestThread] withObject:nil waitUntilDone:NO modes:[self.runLoopModes allObjects]];
}
[self.lock unlock];
}
当需要这个后台线程执行任务时,AFNetworking
通过调用 [NSObject performSelector:onThread:..]
将这个任务扔到了后台线程的 RunLoop
中。
9.autoreleasePool
在何时被释放?
App
启动后,苹果在主线程 RunLoop
里注册了两个 Observer
,其回调都是 _wrapRunLoopWithAutoreleasePoolHandler()
。
第一个 Observer
监视的事件是 Entry(即将进入Loop)
,其回调内会调用 _objc_autoreleasePoolPush()
创建自动释放池。其 order
是 -2147483647
,优先级最高,保证创建释放池发生在其他所有回调之前。
第二个 Observer
监视了两个事件: BeforeWaiting
(准备进入休眠) 时调用_objc_autoreleasePoolPop()
和 _objc_autoreleasePoolPush()
释放旧的池并创建新池;Exit
(即将退出Loop) 时调用 _objc_autoreleasePoolPop()
来释放自动释放池。这个 Observer
的 order
是 2147483647
,优先级最低,保证其释放池子发生在其他所有回调之后。
在主线程执行的代码,通常是写在诸如事件回调、Timer
回调内的。这些回调会被 RunLoop
创建好的 AutoreleasePool
环绕着,所以不会出现内存泄漏,开发者也不必显示创建 Pool
了。
10.PerformSelector
的实现原理?
当调用 NSObject 的 performSelecter:afterDelay: 后,实际上其内部会创建一个 Timer 并添加到当前线程的 RunLoop 中。所以如果当前线程没有 RunLoop,则这个方法会失效。
当调用 performSelector:onThread: 时,实际上其会创建一个 Timer 加到对应的线程去,同样的,如果对应线程没有 RunLoop 该方法也会失效。
11.PerformSelector:afterDelay:
这个方法在子线程中是否起作用?为什么?怎么解决?
不起作用,子线程默认没有 Runloop
,也就没有 Timer
。
解决的办法是可以使用 GCD
来实现:Dispatch_after
�
12.讲一下 Observer
?
typedef CF_OPTIONS(CFOptionFlags, CFRunLoopActivity) {
kCFRunLoopEntry = (1UL << 0), // 即将进入Loop
kCFRunLoopBeforeTimers = (1UL << 1), // 即将处理 Timer
kCFRunLoopBeforeSources = (1UL << 2), // 即将处理 Source
kCFRunLoopBeforeWaiting = (1UL << 5), // 即将进入休眠
kCFRunLoopAfterWaiting = (1UL << 6), // 刚从休眠中唤醒
kCFRunLoopExit = (1UL << 7), // 即将退出Loop
};
13.解释一下 NSTimer
。
NSTimer
其实就是 CFRunLoopTimerRef
,他们之间是 toll-free bridged
的。一个 NSTimer
注册到 RunLoop
后,RunLoop
会为其重复的时间点注册好事件。例如 10:00
, 10:10
, 10:20
这几个时间点。RunLoop
为了节省资源,并不会在非常准确的时间点回调这个Timer
。Timer
有个属性叫做 Tolerance
(宽容度),标示了当时间点到后,容许有多少最大误差。
如果某个时间点被错过了,例如执行了一个很长的任务,则那个时间点的回调也会跳过去,不会延后执行。就比如等公交,如果 10:10 时我忙着玩手机错过了那个点的公交,那我只能等 10:20 这一趟了。
CADisplayLink
是一个和屏幕刷新率一致的定时器(但实际实现原理更复杂,和 NSTimer 并不一样,其内部实际是操作了一个 Source
)。如果在两次屏幕刷新之间执行了一个长任务,那其中就会有一帧被跳过去(和 NSTimer
相似),造成界面卡顿的感觉。在快速滑动 TableView
时,即使一帧的卡顿也会让用户有所察觉。Facebook
开源的 AsyncDisplayLink
就是为了解决界面卡顿的问题,其内部也用到了 RunLoop
。
14.解释一下 事件响应
的过程?
苹果注册了一个 Source1
(基于 mach port
的) 用来接收系统事件,其回调函数为 __IOHIDEventSystemClientQueueCallback()
。
当一个硬件事件(触摸/锁屏/摇晃等)发生后,首先由 IOKit.framework
生成一个 IOHIDEvent
事件并由 SpringBoard
接收。这个过程的详细情况可以参考这里。SpringBoard
只接收按键(锁屏/静音等),触摸,加速,接近传感器等几种 Event
,随后用 mach port
转发给需要的 App
进程。随后苹果注册的那个 Source1
就会触发回调,并调用 _UIApplicationHandleEventQueue()
进行应用内部的分发。
_UIApplicationHandleEventQueue()
会把 IOHIDEvent
处理并包装成 UIEvent
进行处理或分发,其中包括识别 UIGesture
/处理屏幕旋转/发送给 UIWindow
等。通常事件比如 UIButton 点击
、touchesBegin/Move/End/Cancel
事件都是在这个回调中完成的。
15.解释一下 手势识别
的过程?
当上面的 _UIApplicationHandleEventQueue()
识别了一个手势时,其首先会调用 Cancel
将当前的 touchesBegin/Move/End
系列回调打断。随后系统将对应的 UIGestureRecognizer
标记为待处理。
苹果注册了一个 Observer
监测 BeforeWaiting
(Loop即将进入休眠) 事件,这个 Observer
的回调函数是 _UIGestureRecognizerUpdateObserver()
,其内部会获取所有刚被标记为待处理的 GestureRecognizer
,并执行GestureRecognizer
的回调。
当有 UIGestureRecognizer
的变化(创建/销毁/状态改变)时,这个回调都会进行相应处理。
16.什么是异步绘制?
异步绘制,就是可以在子线程把需要绘制的图形,提前在子线程处理好。将准备好的图像数据直接返给主线程使用,这样可以降低主线程的压力。
异步绘制的过程
要通过系统的 [view.delegate displayLayer:]
这个入口来实现异步绘制。
- 代理负责生成对应的 Bitmap
- 设置该 Bitmap 为 layer.contents 属性的值
17.利用 runloop
解释一下页面的渲染的过程?
当我们调用 [UIView setNeedsDisplay]
时,这时会调用当前 View.layer
的 [view.layer setNeedsDisplay]
方法。
这等于给当前的 layer
打上了一个脏标记,而此时并没有直接进行绘制工作。而是会到当前的 Runloop
即将休眠,也就是 beforeWaiting
时才会进行绘制工作。
紧接着会调用 [CALayer display]
,进入到真正绘制的工作。CALayer
层会判断自己的 delegate
有没有实现异步绘制的代理方法 displayer:
,这个代理方法是异步绘制的入口,如果没有实现这个方法,那么会继续进行系统绘制的流程,然后绘制结束。
过程解释:
CALayer
内部会创建一个 Backing Store
,用来获取图形上下文。接下来会判断这个 layer
是否有 delegate。
如果有的话,会调用 [layer.delegate drawLayer:inContext:]
,并且会返回给我们 [UIView DrawRect:]
的回调,让我们在系统绘制的基础之上再做一些事情。
如果没有 delegate
,那么会调用 [CALayer drawInContext:]
。
以上两个分支,最终 CALayer
都会将位图提交到 Backing Store
,最后提交给 GPU
。
至此绘制的过程结束。
网友评论