美文网首页Java 程序员Java
java多线程之threadlocal的原理分析

java多线程之threadlocal的原理分析

作者: 程序花生 | 来源:发表于2021-09-07 17:28 被阅读0次

    jdk1.2版本就有解决多线程并发的工具类,threadlocal类本质上以空间换时间,让每一个线程拥有一份共享变量的副本,然后这样就没有多线程并发的问题,每一个线程都各自修改自己变量副本,互不影响

    ThreadLocal的属性

    ThreadLocal属性非常简单就是nextHashCode, 还有一个魔数HASH_INCREMENT变量,它是每次增加的这个固定的 数,就得到下一个Hash值,下面代码官方注释说明相比于连续的递增的hashcode,每次增加 固定魔数,对于2的n次方幂的数组效率更优,至于为什么选取加这个魔数,这个跟斐波那契数列有关,感兴趣可以另外搜索相关资料研究

    private final int threadLocalHashCode = nextHashCode();
    
    /**
     * The next hash code to be given out. Updated atomically. Starts at
     * zero.
     */
    private static AtomicInteger nextHashCode =
        new AtomicInteger();
    /**
     * The difference between successively generated hash codes - turns
     * implicit sequential thread-local IDs into near-optimally spread
     * multiplicative hash values for power-of-two-sized tables.
     */
    private static final int HASH_INCREMENT = 0x61c88647;
    

    ThreadLocal的set方法

    get set方法是了解threadLocal的核心原理的方法,

    首先获取当前线程,

    获取Thread的内部对象ThreadLocalMap的变量,

    如果ThreadLocalMap变量为空,则创建ThreadLocalMap对象, 注意这里的参数this是threadLocal的事例

    如果ThreadLocalMap变量不为空,则直接设置值

    public void set(T value) {
       //获取当前线程
        Thread t = Thread.currentThread();
        //获取ThreadLocalMap对象
        ThreadLocalMap map = getMap(t);
        if (map != null) {
            //设置值
            map.set(this, value);
        } else {
            //创建
            createMap(t, value);
        }
    }
    //创建ThreadLocalMap对象
    void createMap(Thread t, T firstValue) {
        t.threadLocals = new ThreadLocalMap(this, firstValue);
    }
    

    ThreadLocalMap类成员变量

    从下面可以看到ThreadLocalMap的数组的对象是Entry对象,它是继承了WeakReference这个,初始化Entry对象时,调用了父类的构造函数,也就是Entry对象中k是弱引用,而上面创建该对象时,传入的参数就是ThreadLocal对象的this指针,所以放入ThreadLocalMap中Entry 对象中ThreadLocal时弱引用,

    static class ThreadLocalMap {
        /**
         * The entries in this hash map extend WeakReference, using
         * its main ref field as the key (which is always a
         * ThreadLocal object).  Note that null keys (i.e. entry.get()
         * == null) mean that the key is no longer referenced, so the
         * entry can be expunged from table.  Such entries are referred to
         * as "stale entries" in the code that follows.
         */
        static class Entry extends WeakReference<ThreadLocal<?>> {
            /** The value associated with this ThreadLocal. */
            Object value;
    
            Entry(ThreadLocal<?> k, Object v) {
                super(k);
                value = v;
            }
        }
        /**
         * The initial capacity -- MUST be a power of two.
         */
        private static final int INITIAL_CAPACITY = 16;
        /**
         * The table, resized as necessary.
         * table.length MUST always be a power of two.
         */
        private Entry[] table;
        /**
         * The number of entries in the table.
         */
        private int size = 0;
        /**
         * The next size value at which to resize.
         */
        private int threshold; // Default to 0
    

    Thread和ThreadLocalMap以及ThreadLocal之间的关系如下:

    从上图可以看出ThreadLocalMap中key是ThreadLocal对象,value就是保存的变量值,这两个构成一个Entry对象,设置到ThreadLocalMap中,解决冲突方法是开发地址法,即往右面偏移,而HashMap则是拉链法,这只是两种其中一点不同,其他的可以继续往下看。

    首先去key的threadLocalHashCode值与(len-1)做&运算,然后得到具体落到哪一个桶上, 如果产生碰撞,则通过开放地址法,index加1往后偏移一个桶地址,如果找到key等于k, 则将新value替换旧值后返回。

    如果查询过程中key为null,此时会调用replaceStaleEntry替换老的Entry.

    如果i的位置为空,则创建一个新的Entry,放到i的位置,size加1.

    调用cleanSomeSlots清除[i,size)区间一些槽位, 如果数组的长度大于threshold(即数组的2/3),则调用rehas进行扩容.

    private void set(ThreadLocal<?> key, Object value) {
    
        // We don't use a fast path as with get() because it is at
        // least as common to use set() to create new entries as
        // it is to replace existing ones, in which case, a fast
        // path would fail more often than not.
        Entry[] tab = table;
        int len = tab.length;
        int i = key.threadLocalHashCode & (len-1);
    
        for (Entry e = tab[i];
             e != null;
             e = tab[i = nextIndex(i, len)]) {
            ThreadLocal<?> k = e.get();
    
            if (k == key) {
                e.value = value;
                return;
            }
    
            if (k == null) {
                replaceStaleEntry(key, value, i);
                return;
            }
        }
    
        tab[i] = new Entry(key, value);
        int sz = ++size;
        if (!cleanSomeSlots(i, sz) && sz >= threshold)
            rehash();
    }
    

    接下来看下replaceStaleEntry是如果替换老的Entry。

    首先,以上面hash地址&(len-1)得出的位置i开始, 从后往前找,找到Entry不为空,但是Entry的key为空的(这样就是会造成内存泄漏的数据),slotToExpunge标记一个index,这样[slotToExpunge,i]这个就是需要清理的索引区间。

    从staleSlot的位置后面一个位置,开始从前往后遍历,如果找到这个key,我们可以将这个Entry交换到staleSlot的位置

    如果脏数据的开始位置和slotToExpunge的索位置相等,则slotToExpunge索引赋值为从上一步从前往后找到第一个key相等的位置的索引.然后调用expungeStaleEntry从staleSlot开始清除脏数据,最后调用cleanSomeSlots启发式扫描清除某些槽位。

    如果没有清理的槽位,并且size大于threshod(即size的2/3).则进行rehash进行扫描全部数组进行清理过期数据,如果还是threshod的3/4,则通过resize进行扩容。

    private void replaceStaleEntry(ThreadLocal<?> key, Object value,
                                   int staleSlot) {
        Entry[] tab = table;
        int len = tab.length;
        Entry e;
    
        // Back up to check for prior stale entry in current run.
        // We clean out whole runs at a time to avoid continual
        // incremental rehashing due to garbage collector freeing
        // up refs in bunches (i.e., whenever the collector runs).
        int slotToExpunge = staleSlot;
        for (int i = prevIndex(staleSlot, len);
             (e = tab[i]) != null;
             i = prevIndex(i, len))
            if (e.get() == null)
                slotToExpunge = i;
    
        // Find either the key or trailing null slot of run, whichever
        // occurs first
        for (int i = nextIndex(staleSlot, len);
             (e = tab[i]) != null;
             i = nextIndex(i, len)) {
            ThreadLocal<?> k = e.get();
    
            // If we find key, then we need to swap it
            // with the stale entry to maintain hash table order.
            // The newly stale slot, or any other stale slot
            // encountered above it, can then be sent to expungeStaleEntry
            // to remove or rehash all of the other entries in run.
            if (k == key) {
               //交换位置
                e.value = value;
                tab[i] = tab[staleSlot];
                tab[staleSlot] = e;
    
                // Start expunge at preceding stale entry if it exists
                if (slotToExpunge == staleSlot)
                    slotToExpunge = i;
                cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
                return;
            }
    
            // If we didn't find stale entry on backward scan, the
            // first stale entry seen while scanning for key is the
            // first still present in the run.
            if (k == null && slotToExpunge == staleSlot)
                slotToExpunge = i;
        }
    
        // If key not found, put new entry in stale slot
        tab[staleSlot].value = null;
        tab[staleSlot] = new Entry(key, value);
    
        // If there are any other stale entries in run, expunge them
        if (slotToExpunge != staleSlot)
            cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
    }
    

    staleSlot是已知key为空的Entry的索引, 从staleSlot开始从前往后搜索

    如果key为空,则设置清设置Entry的value为null。并且设置对应位置为空

    如果key不为空,并且i位置和hash&(len-1)不相等,说明这是通过开发地址法放进来的元素,则通过rehash,循环直到找一个hash&(len-1)的位置为空,并把它放到这个位置(这里这这一步主要是解决减少hash碰撞产生,使得查询时间复杂度为 O(1)).

    private int expungeStaleEntry(int staleSlot) {
        Entry[] tab = table;
        int len = tab.length;
    
        // expunge entry at staleSlot
        tab[staleSlot].value = null;
        tab[staleSlot] = null;
        size--;
        // Rehash until we encounter null
        Entry e;
        int i;
        for (i = nextIndex(staleSlot, len);
             (e = tab[i]) != null;
             i = nextIndex(i, len)) {
            ThreadLocal<?> k = e.get();
            if (k == null) {
                e.value = null;
                tab[i] = null;
                size--;
            } else {
                int h = k.threadLocalHashCode & (len - 1);
                if (h != i) {
                    tab[i] = null;
    
                    // Unlike Knuth 6.4 Algorithm R, we must scan until
                    // null because multiple entries could have been stale.
                    while (tab[h] != null)
                        h = nextIndex(h, len);
                    tab[h] = e;
                }
            }
        }
        return i;
    }
    

    这里就是搜素索引i(即expungeStaleEntry函数返回索引的位置,即staleSlot位置后第一个Entry为空的位置,即不是脏数据的索引),n就是tab的length,从i开始往后遍历,如果Entry不为空,但是key为空,保存len,赋值removed变量为true,然后调用expungeStaleEntry再次 清除脏数据,然后将n缩减一半的长度,重新探索,直至0为止。

    private boolean cleanSomeSlots(int i, int n) {
        boolean removed = false;
        Entry[] tab = table;
        int len = tab.length;
        do {
            i = nextIndex(i, len);
            Entry e = tab[i];
            if (e != null && e.get() == null) {
                n = len;
                removed = true;
                i = expungeStaleEntry(i);
            }
        } while ( (n >>>= 1) != 0);
        return removed;
    }
    

    扫描全部数据进行清理过期数据,

    size 大于 threshod的3/4,则调用resize进行扩容。

    private void rehash() {
        expungeStaleEntries();
    
        // Use lower threshold for doubling to avoid hysteresis
        if (size >= threshold - threshold / 4)
            resize();
    }
    

    ThreadLocal resize进行扩容

    ThreadLocal的扩容机制,是将申请原先长度乘以2的数组,然后重新计算hash值,然后放入新的数组中即可,然后重新计算扩容阈值。

    private void resize() {
        Entry[] oldTab = table;
        int oldLen = oldTab.length;
        int newLen = oldLen * 2;
        Entry[] newTab = new Entry[newLen];
        int count = 0;
    
        for (int j = 0; j < oldLen; ++j) {
            Entry e = oldTab[j];
            if (e != null) {
                ThreadLocal<?> k = e.get();
                if (k == null) {
                    e.value = null; // Help the GC
                } else {
                    int h = k.threadLocalHashCode & (newLen - 1);
                    while (newTab[h] != null)
                        h = nextIndex(h, newLen);
                    newTab[h] = e;
                    count++;
                }
            }
        }
    
        setThreshold(newLen);
        size = count;
        table = newTab;
    }
    

    ThreadLocal get进行获取值

    首先获取Thread的threadLocalMap对象,然后通过getEntry方法获Entry对象,

    然后获取Entry不为空,则直接返回

    public T get() {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null) {
            ThreadLocalMap.Entry e = map.getEntry(this);
            if (e != null) {
                @SuppressWarnings("unchecked")
                T result = (T)e.value;
                return result;
            }
        }
        return setInitialValue();
    }
    

    首先通过key的threadLocalHashCode&(len-1),定位到对应的桶,

    如果key相等,说明已经找到该元素,直接返回

    如果key不等,则开发地址法,调用getEntryAfterMiss继续往查找。

    private Entry getEntry(ThreadLocal<?> key) {
        int i = key.threadLocalHashCode & (table.length - 1);
        Entry e = table[i];
        if (e != null && e.get() == key)
            return e;
        else
            return getEntryAfterMiss(key, i, e);
    }
    

    继续从i的位置往后搜索直到entry为空时停止

    如果遇到k为空null时,则expungeStaleEntry进行清理过期数据

    如果循环结束还咩有找到,则直接返回null结束

    private Entry getEntryAfterMiss(ThreadLocal<?> key, int i, Entry e) {
        Entry[] tab = table;
        int len = tab.length;
    
        while (e != null) {
            ThreadLocal<?> k = e.get();
            if (k == key)
                return e;
            if (k == null)
                expungeStaleEntry(i);
            else
                i = nextIndex(i, len);
            e = tab[i];
        }
        return null;
    }
    

    ThreadLocal的remove删除值

    首先还是通过threadLocalHashCode&(len-1)定位对应的数组索引i,

    从i开始从前往后搜索,知道key相等,然后删除Entry,然后执行expungeStaleEntry进行 一次过期数据的清理结束

    private void remove(ThreadLocal<?> key) {
        Entry[] tab = table;
        int len = tab.length;
        int i = key.threadLocalHashCode & (len-1);
        for (Entry e = tab[i];
             e != null;
             e = tab[i = nextIndex(i, len)]) {
            if (e.get() == key) {
                e.clear();
                expungeStaleEntry(i);
                return;
            }
        }
    }
    

    总结

    今天主要是对ThreadLocal的set get remove等重要方法进行一个详细的分析,也对ThreadLocal的解决Hash冲突的方法,key的弱引用,扩容、探测清理和启发式清理过期元素有了一个清理的认识。

    作者:xjz1842
    链接:https://juejin.cn/post/7005091348118241288
    来源:掘金

    相关文章

      网友评论

        本文标题:java多线程之threadlocal的原理分析

        本文链接:https://www.haomeiwen.com/subject/iwjpwltx.html