美文网首页
Android消息机制浅析

Android消息机制浅析

作者: 快乐的橙橙宝 | 来源:发表于2018-12-19 17:21 被阅读0次

    1. Android消息机制相关类

    • Message:硬件产生的消息(按钮、触摸)和软件生成的消息
    • MessageQueue:消息队列,向消息池推送消息和取出消息
    • Handler:消息处理辅助类,用于发送消息和处理消息
    • Looper:线程运行消息循环类,默认情况下线程没有与之关联的消息循环,可以调用prepare(),然后调用loop()使之处理消息。如果一个Looper开始工作后,一直没有消息处理的话,那么该线程就会被阻塞。在非UI线程中,这时候应该监听当前MessageQueue的Idle事件,如果当前有Idle事件,则应该退出当前的消息循环,然后结束该线程,释放相应的资源。
    1.1 相关类图
    Handler消息机制类图

    2. Looper

    looper主要方法就是looper.prepare()和looper.loop()

    2.1 Loopr.prepare()
     public static void prepare() {
         prepare(true);
     }
     private static void prepare(boolean quitAllowed) {
        //prepare方法只能执行一次
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        //向线程本地存储区TLS保存新创建的Looper
        sThreadLocal.set(new Looper(quitAllowed));
     }
    
    ThreadLocal

    线程本地存储区(Thread Local Storage,简称为TLS),每个线程都有自己的私有的本地存储区域,不同线程之间彼此不能访问对方的TLS区域。

    ThreadLocal内部结构图: ThreadLocal结构

    ThreadLocal机制:

    • 每个线程内部都有一个ThreadLocalMap
    • ThreadLocalMap中存储的是Entry,其key是ThreadLocal的弱引用,value是线程变量副本,且这个value的值的类型是ThreadLocal的泛型类型(key是弱引用而value不是,注意内存泄漏)
    ThreadLocal.get()
    public T get() {
        Thread t = Thread.currentThread();
        //获取线程内部的ThreadLocalMap
        ThreadLocalMap map = getMap(t);
        if (map != null) {
            //根据TheadLocal对象获取Entry
            ThreadLocalMap.Entry e = map.getEntry(this);
            if (e != null) {
                @SuppressWarnings("unchecked")
                T result = (T)e.value;
                return result;
            }
        }
        //返回null
        return setInitialValue();
    }
    
    ThreadLocal.set()
     public void set(T value) {
        Thread t = Thread.currentThread();
        //获取线程内部的ThreadLocalMap
        ThreadLocalMap map = getMap(t);
        if (map != null)
            //ThreadLocalMap的set方法,采用的不是map存储而是entry对象存储,
            //使用的是线性探测解决hash冲突,详见ThreadLocalMap.set()
            map.set(this, value);
        else
            //初始化线程内部的ThreadLocalMap
            createMap(t, value);
    }
    
    2.2 Looper.loop()
    public static void loop() {
        //获取当前线程的Looper
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        //获取Looper关联的MessageQueue
        final MessageQueue queue = me.mQueue;
    
        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        //清楚IPC身份标志
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();
    
        for (;;) {
            //从MessageQueue中获取一个Message,如果当前MessageQueue没有消息,就会阻塞;
            Message msg = queue.next(); // might block
            //没有消息退出队列
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }
    
            // This must be in a local variable, in case a UI event sets the logger
            Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }
            //调用Message中的Handler分发消息
            msg.target.dispatchMessage(msg);
    
            if (logging != null) {
                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
            }
    
            // Make sure that during the course of dispatching the
            // identity of the thread wasn't corrupted.
            final long newIdent = Binder.clearCallingIdentity();
            //IPC 身份标识发生变化
            if (ident != newIdent) {
                Log.wtf(TAG, "Thread identity changed from 0x"
                        + Long.toHexString(ident) + " to 0x"
                        + Long.toHexString(newIdent) + " while dispatching to "
                        + msg.target.getClass().getName() + " "
                        + msg.callback + " what=" + msg.what);
            }
            //回收消息放入线程池
            msg.recycleUnchecked();
        }
    }
    

    3. MessageQueue

    使用单链表的方式维护一个消息队列,提高频繁插入删除消息等操作的性能,该链表用消息的when字段进行排序,先被处理的消息排在链表前部。内部的阻塞轮询和唤醒等操作,使用JNI来实现。
    主要方法enqueueMessage()和next()

    3.1 MessageQueue.enqueueMessage()
    boolean enqueueMessage(Message msg, long when) {
        //message中的handler不能为null
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        //正在被使用抛出异常
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }
    
        synchronized (this) {
            //消息队列退出
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                //回收message
                msg.recycle();
                return false;
            }
            
            //标识正在使用
            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            //当前msg时间与队首时间对比,小于则放队首
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                //阻塞,队首是barrier并且msg是异步
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                //以下代码找到合适位置插入msg
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    //msg前面有异步消息不唤醒
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }
    
            // We can assume mPtr != 0 because mQuitting is false.
            //唤醒调用native方法
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }
    
    3.1 MessageQueue.next()
    Message next() {
        // Return here if the message loop has already quit and been disposed.
        // This can happen if the application tries to restart a looper after quit
        // which is not supported.
        final long ptr = mPtr;
        //退出
        if (ptr == 0) {
            return null;
        }
        
        //Idle时间标记成第一次
        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }
            
            //阻塞,等待阻塞时长或者队列被唤醒
            nativePollOnce(ptr, nextPollTimeoutMillis);
    
            synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {
                //首部为barrier消息,则取出最头的异步消息
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) {
                        //未到执行时间,设置下一次轮询阻塞时间
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        //到执行时间取走msg
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();
                        return msg;
                    }
                } else {
                    // No more messages.
                    //没有消息不阻塞
                    nextPollTimeoutMillis = -1;
                }
    
                // Process the quit message now that all pending messages have been handled.
                //退出循环并释放资源
                if (mQuitting) {
                    dispose();
                    return null;
                }
    
                // If first time idle, then get the number of idlers to run.
                // Idle handles only run if the queue is empty or if the first message
                // in the queue (possibly a barrier) is due to be handled in the future.
                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }
                if (pendingIdleHandlerCount <= 0) {
                    // No idle handlers to run.  Loop and wait some more.
                    mBlocked = true;
                    continue;
                }
    
                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }
    
            // Run the idle handlers.
            // We only ever reach this code block during the first iteration.
            for (int i = 0; i < pendingIdleHandlerCount; i++) {
                final IdleHandler idler = mPendingIdleHandlers[i];
                mPendingIdleHandlers[i] = null; // release the reference to the handler
    
                boolean keep = false;
                try {
                    //执行idlehandler
                    keep = idler.queueIdle();
                } catch (Throwable t) {
                    Log.wtf(TAG, "IdleHandler threw exception", t);
                }
    
                if (!keep) {
                    synchronized (this) {
                        mIdleHandlers.remove(idler);
                    }
                }
            }
    
            // Reset the idle handler count to 0 so we do not run them again.
            pendingIdleHandlerCount = 0;
    
            // While calling an idle handler, a new message could have been delivered
            // so go back and look again for a pending message without waiting.
            nextPollTimeoutMillis = 0;
        }
    }
    
    

    4. Message

    消息对象,内部包含一个单链表实现的最大数量为50的消息池,以避免频繁创建对象带来的开销,主要方法有obtain()和recycleUnchecked()

    4.1 Message.obtain()
    public static Message obtain() {
        synchronized (sPoolSync) {
            if (sPool != null) {
                //从单链表对象池表头取出对象
                Message m = sPool;
                //下一个消息作为链表表头
                sPool = m.next;
                //断开链表
                m.next = null;
                m.flags = 0; // clear in-use flag
                sPoolSize--;
                return m;
            }
        }
        return new Message();
    }
    
    4.2 Message.recycleUnchecked()
    void recycleUnchecked() {
        // Mark the message as in use while it remains in the recycled object pool.
        // Clear out all other details.
        //添加正在使用标志位,清空参数
        flags = FLAG_IN_USE;
        what = 0;
        arg1 = 0;
        arg2 = 0;
        obj = null;
        replyTo = null;
        sendingUid = -1;
        when = 0;
        target = null;
        callback = null;
        data = null;
    
        synchronized (sPoolSync) {
            //链表大小没满,把当前对象插入表头
            if (sPoolSize < MAX_POOL_SIZE) {
                next = sPool;
                sPool = this;
                sPoolSize++;
            }
        }
    }
    

    5. Handler

    负责消息的发送和接收,主要方法enqueueMessage()和dispatchMessage()

    5.1 Handler.enqueueMessage()

    Handler.sendEmptyMessage()等最终都是调用enqueueMessage()

    private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        //msg持有handler
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        //调用MessageQueue的enqueueMessage方法
        return queue.enqueueMessage(msg, uptimeMillis);
    }
    
    
    5.2 Handler.dispatchMessage()
    /**
     * Handle system messages here.
     */
    public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);
        }
    }
    
    

    消息分发流程:
    Message的callback-->Handler的mCallback-->Handler的handleMessage

    6. 总结

    Handler消息机制流程
    • Handler通过sendMessage()发送Message到MessageQueue
    • Message到MessageQueue后唤醒loop线程,MessageQueue中没有Message则执行IdleHnalder接口中方法
    • Looper通过loop()方法不断取出Message,并将Message交给其target(Handler)处理

    相关文章

      网友评论

          本文标题:Android消息机制浅析

          本文链接:https://www.haomeiwen.com/subject/ixajkqtx.html