Android 消息机制就是handler的运行机制以及MessageQueue和Looper的工作过程。
那么Android的消息机制为什么要用Handler呢?
在Android中,UI线程是非线程安全的,所以规定只能在主线程中访问UI线程。而且主线程中不能进行耗时的操作,所以把耗时操作放在异步线程中执行。那如何让子线程中的获取的数据在主线程中进行使用呢,这个时候就用到了Handler。
Handler的运行机制 少不了Handler Message MessageQueue Looper几个类的支撑,下面分别对每个类进行介绍。
Handler
A Handler allows you to send and process {@link Message} and Runnable objects associated with a thread's {@link MessageQueue}. Each Handler instance is associated with a single thread and that thread's message queue. When you create a new Handler, it is bound to the thread /message queue of the thread that is creating it -- from that point on, it will deliver messages and runnables to that message queue and execute them as they come out of the message queue.
大致意思:handler 通过关联一个消息队列来发送和处理消息,发送或处理Runnable对象
Handler的作用
There are two main uses for a Handler: (1) to schedule messages and runnables to be executed as some point in the future; and (2) to enqueue an action to be performed on a different thread than your own.
大致意思:handler 通过关联一个消息队列来发送和处理消息,发送或处理Runnable对象
- 在未来某个时间点执行分发的message/runnable
- 在其他线程执行action
介绍完handler 来看看handler的 constructor的实现
public Handler(Callback callback, boolean async) {
if (FIND_POTENTIAL_LEAKS) {
final Class<? extends Handler> klass = getClass();
if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
(klass.getModifiers() & Modifier.STATIC) == 0) {
Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
klass.getCanonicalName());
}
}
mLooper = Looper.myLooper();
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread " + Thread.currentThread()
+ " that has not called Looper.prepare()");
}
mQueue = mLooper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
首先检测用户创建的handler类是不是static的,如果不是则会提示The following Handler class should be static or leaks might occur,意思就说会有导致内存泄露的可能。
在子线程中如果没有创建looper,则会抛出异常“has not called Looper.prepare()”,因为在主线程中,系统默认就会创建looper,所以我们平时使用handler时,没有创建looper是不报错的,但是在子线程中会抛出异常的,接着就是将handler和MessageQueue进行关联。
Handler的主要工作包含消息的发送和接收,先分析发送:
public final boolean sendMessage(Message msg)
{
return sendMessageDelayed(msg, 0);
}
public final boolean sendEmptyMessage(int what)
{
return sendEmptyMessageDelayed(what, 0);
}
public final boolean sendEmptyMessageDelayed(int what, long delayMillis) {
Message msg = Message.obtain();
msg.what = what;
return sendMessageDelayed(msg, delayMillis);
}
public final boolean sendEmptyMessageAtTime(int what, long uptimeMillis) {
Message msg = Message.obtain();
msg.what = what;
return sendMessageAtTime(msg, uptimeMillis);
}
//上面的方法最终都会走到这里,这个方法主要功能还是实现了enqueueMessage
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
接着分析enqueueMessage:
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
msg.target = this;
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}
可以看到,Handler发送消息的过程就是向MessageQueue中插入一条消息,下面会讲到MessageQueue通过next方法获取出消息,然后返回给looper,在looper的loop方法中执行了msg.target.dispatchMessage(msg); msg.target 就是指的handler。那么接着分析dispatchMessage:
/**
* Handle system messages here.
*/
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}
Message的callback就是一个Runnable对象,日常使用handler时会重写handlerMessage方法去处理消息,而callback的意义就是当我们不想实现handlerMessage方法时,就可以用callback代替。
Looper
used to run a message loop for a thread 简单的说就是 为一个线程进行消息轮询,典型的使用案例如下代码所示:
* <pre>
* class LooperThread extends Thread {
* public Handler mHandler;
*
* public void run() {
* Looper.prepare();
*
* mHandler = new Handler() {
* public void handleMessage(Message msg) {
* // process incoming messages here
* }
* };
*
* Looper.loop();
* }
* }</pre>
在创建handler之前执行Looper.prepare(), 创建handler之后执行Looper.loop()即可。
/** Initialize the current thread as a looper.
* This gives you a chance to create handlers that then reference
* this looper, before actually starting the loop. Be sure to call
* {@link #loop()} after calling this method, and end it by calling
* {@link #quit()}.
*/
public static void prepare() {
prepare(true);
}
作用时在确定执行轮询(loop)之前,创建handler并关联looper,执行prepare后确定执行loop,结束用quit。接着跟踪下:
prepare(boolean)方法
这里面的入参boolean表示Looper是否允许退出,true就表示允许退出,对于false则表示Looper不允许退出。
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
/**
* Initialize the current thread as a looper, marking it as an
* application's main looper. The main looper for your application
* is created by the Android environment, so you should never need
* to call this function yourself. See also: {@link #prepare()}
*/
public static void prepareMainLooper() {
prepare(false);
synchronized (Looper.class) {
if (sMainLooper != null) {
throw new IllegalStateException("The main Looper has already been prepared.");
}
sMainLooper = myLooper();
}
}
上面是子线程创建handler必须要调用的,后者是应用创建主线程时调用,使用者可不理会。关于sThreadLocal 后面文章会继续讲解。接着看下Looper的构造方法:
Looper(boolean)构造函数
private Looper(boolean quitAllowed) {
// 创建MessageQueue对象
mQueue = new MessageQueue(quitAllowed);
// 记录当前线程
mThread = Thread.currentThread();
}
通过上面代码,我们发现就是创建了一个MessageQueue,并且把当前线程赋值给本地变量的mThread。这里就实现了Looper和MessageQueue,Thread的关联,也知道Looper类不是通过构造函数直接来创建looper,而是通过静态方法调用间接创建Looper类。前面我们讲了Looper的作用就是为线程轮询消息,接着看真正的实现:
/**
* Run the message queue in this thread. Be sure to call
* {@link #quit()} to end the loop.
*/
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
boolean slowDeliveryDetected = false;
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
...
final long traceTag = me.mTraceTag;
long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
long slowDeliveryThresholdMs = me.mSlowDeliveryThresholdMs;
if (thresholdOverride > 0) {
slowDispatchThresholdMs = thresholdOverride;
slowDeliveryThresholdMs = thresholdOverride;
}
final boolean logSlowDelivery = (slowDeliveryThresholdMs > 0) && (msg.when > 0);
final boolean logSlowDispatch = (slowDispatchThresholdMs > 0);
final boolean needStartTime = logSlowDelivery || logSlowDispatch;
final boolean needEndTime = logSlowDispatch;
if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
}
final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0;
final long dispatchEnd;
try {
msg.target.dispatchMessage(msg);
dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
} finally {
if (traceTag != 0) {
Trace.traceEnd(traceTag);
}
}
...
msg.recycleUnchecked();
}
}
通过queue.next() 获取消息,当消息为null的时候,MessageQueue就会调用quit或者quitSafety方法并被标记为退出状态,当消息队列被标记为退出状态时,next方法就会返回null。换句话说,loop方法会调用MessageQueue的next方法来获取新消息,next方法是一个阻塞操作,当没有消息时,next方法会一致阻塞,loop方法也会被阻塞,当有新消息到达时,Looper就会继续处理消息了。
msg.target.dispatchMessage(msg)分发消息,msg.target 就是指当前线程绑定的handler,msg.recycleUnchecked() 将消息放入消息池。
Message
Defines a message containing a description and arbitrary data object that can be sent to a {@link Handler}. This object contains two extra int fields and an extra object field that allow you to not do allocations in many cases.
一个实现了序列化的对象。接着看一下obtion方法:
/**
* Same as {@link #obtain()}, but sets the value for the <em>target</em> member on the Message returned.
* @param h Handler to assign to the returned Message object's <em>target</em> member.
* @return A Message object from the global pool.
*/
public static Message obtain(Handler h) {
Message m = obtain();
m.target = h;
return m;
}
可以看到message.target = handler ,就可以理解了上面Looper.loop()方法分发消息的target 就是handler,可以知道先是handler发送消息,然后handler分发消息,最后自己实现handleMessage方法处理消息,其他obtain方法大同小异。
MessageQueue
MessageQueue主要包含两个功能,enqueueMessage和next。
先看一下enqueueMessage:
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
synchronized (this) {
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
从实现来看主要就是单链表的插入操作,接着再看next方法:
Message next() {
// Return here if the message loop has already quit and been disposed.
// This can happen if the application tries to restart a looper after quit
// which is not supported.
final long ptr = mPtr;
if (ptr == 0) {
return null;
}
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1;
}
// Process the quit message now that all pending messages have been handled.
if (mQuitting) {
dispose();
return null;
}
// If first time idle, then get the number of idlers to run.
// Idle handles only run if the queue is empty or if the first message
// in the queue (possibly a barrier) is due to be handled in the future.
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when)) {
pendingIdleHandlerCount = mIdleHandlers.size();
}
if (pendingIdleHandlerCount <= 0) {
// No idle handlers to run. Loop and wait some more.
mBlocked = true;
continue;
}
if (mPendingIdleHandlers == null) {
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
}
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
}
// Run the idle handlers.
// We only ever reach this code block during the first iteration.
for (int i = 0; i < pendingIdleHandlerCount; i++) {
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler
boolean keep = false;
try {
keep = idler.queueIdle();
} catch (Throwable t) {
Log.wtf(TAG, "IdleHandler threw exception", t);
}
if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler);
}
}
}
// Reset the idle handler count to 0 so we do not run them again.
pendingIdleHandlerCount = 0;
// While calling an idle handler, a new message could have been delivered
// so go back and look again for a pending message without waiting.
nextPollTimeoutMillis = 0;
}
}
next方法中也有一个for循环,如果有新消息,next方法会retrun这条消息并且从链表中移除,否则的话会一直阻塞,直到有新消息。
总结:
-
Looper类用来为一个线程开启一个消息循环。默认情况下android中新创建的线程是未开启消息循环的。(主线程除外,主线程系统会自动为其创建Looper对象,开启消息循环。)
Looper对象通过MessageQueue来存放消息和事件。一个线程只能有一个Looper,对应一个MessageQueue。(如果对一个已经quit的Looper重新start会出现异常) -
通常是通过Handler与Looper进行交互的,Handler可看做是Looper的一个接口,用来向指定的Looper发送消息及定义处理方法。
默认情况下Handler会与其被定义时所在线程的Looper绑定,比如,Handler在主线程中定义,那么它是与主线程的Looper绑定。
mainHandler = new Handler() 等价于new Handler(Looper.myLooper()).
Looper.myLooper():获取当前进程的looper对象,类似的 Looper.getMainLooper() 用于获取主线程的Looper对象。 -
在非主线程中直接new Handler() 会报如下的错误:
E/AndroidRuntime( 6173): Uncaught handler: thread Thread-8 exiting due to uncaught exception
E/AndroidRuntime( 6173): java.lang.RuntimeException: Can't create handler inside thread that has not called Looper.prepare()
原因是非主线程中默认没有创建Looper对象,需要先调用Looper.prepare()启用Looper。 -
Looper.loop()让Looper开始工作,从消息队列里取消息,处理消息。注意:写在Looper.loop()之后的代码不会被执行,这个函数内部应该是一个循环,当调用mHandler.getLooper().quit()后,loop才会中止,其后的代码才能得以运行。
网友评论