一、测试目的
- 在本文中,七镜将基于 Star Schema Benchmark 标准测试集对两款MPP数据库进行性能比对测试,以评估它们在不同场景下的表现。
- 七镜将使用一些常见的性能指标,如响应时间、CPU最大占用率等,来对比不同数据库的优劣。
- 七镜的测试目标是为读者提供一个参考,帮助读者选择适合自己需求的数据库。
二、测试环境
- 在本文中,七镜将使用以下几种数据库进行测试:
- Cloudwave 4.0:拥有顶级性能的国产云原生数据仓库,目前已知的国内首款类snowflake的存算分离架构数据库(从10年积累的传统分布式数据库底层改造,支持彻底的存算分离,2021年9月份发版)。
- Starrocks 3.0:新一代极速全场景 MPP (Massively Parallel Processing) 数据库。
- 七镜的测试环境如下:
- 硬件配置:CPU 64核,内存 256GB,1TB容量阿里云 ESSD pl1 云盘
- 操作系统:Linux CentOS 7.6
- 测试工具:测试脚本、分析脚本、sql脚本(见附加)
- 测试数据:使用 SSB 基准测试集生成的数据,总量约为 30GB、100GB
三、测试方案
- 七镜将执行 SSB 13条标准测试SQL,分别在不同数据库上执行,并比较它们的响应时间和CPU资源消耗。
- 七镜将按照以下步骤进行测试:
- 步骤一:准备数据。七镜将使用 SSB 工具生成数据,并导入到不同数据库中。
- 步骤二:设计测试脚本。七镜将根据不同数据库的特点,设计对应测试脚本。
- 步骤三:执行测试。七镜将执行测试版脚本,并在不同数据库上执行测试。
- 步骤四:分析结果。七镜将收集和整理结果,并对比不同数据库的性能指标。
四、测试结果
- 在本节中,七镜将展示和分析七镜的测试结果。七镜将使用表格和图表的形式,来展示不同数据库在不同场景下的性能指标。
- 表1:查询性能测试结果
数据库 | 数据集 | 响应时间(ms) | CPU 最大占用率 |
---|---|---|---|
Cloudwave 4.0 | ssb30 | 779 | 1453%/6400% |
Starrocks 3.0 | ssb30 | 1182 | 3291%/6400% |
Cloudwave 4.0 | ssb100 | 1767 | 4143%/6400% |
Starrocks 3.0 | ssb100 | 3054 | 4462%/6400% |
- 图1:查询性能测试结果
- 分析:Cloudwave 4.0 单机版本在 30g的 Star Schema Benchmark 标准测试集下,整体性能优于Starrocks 3.0 单机版本近0.5倍
- 图2:查询性能测试结果
- 分析:Cloudwave 4.0 单机版本在 100g的 Star Schema Benchmark 标准测试集下,整体性能优于Starrocks 3.0 单机版本近0.7倍
五、总结与建议
- 在本文中,七镜对Cloudwave 和 Starrocks数据库进行了性能比对测试,并得到了一些有价值的结论。
- 总体来说,Cloudwave 在 SSB 标准测试集下,性能优于 Starrocks
- 根据七镜的测试结果,七镜给出以下建议:
- 对于追求极致性能的场景,尤其是olap多维分析场景(鉴于Star Schema Benchmark是学术界和工业界广泛使用的一个星型模型测试集,通过这个测试集合可以方便的对比各种 OLAP 产品的基础性能指标),建议使用Cloudwave数据库,因为Cloudwave数据库在这块的的性能真的优秀;
- 对于常规场景,建议使用Starrocks数据库,因为Starrocks数据库官方号称全场景极速,也有不同场景的使用案例;
- 当然,七镜的测试并不完善,还有一些局限性和不足之处。例如:
- 七镜只使用了一种数据集和一种工具进行测试,可能不能覆盖所有可能的情况。
- 七镜只考虑了一些常见的性能指标,没有涉及到其他方面,如安全性、可用性、可扩展性等。
- 七镜没有考虑到不同数据库之间的兼容性和迁移成本等问题。
- 因此,在实际选择数据库时,还需要根据自己的具体需求和场景进行综合考虑和评估。
六、附加
- Cloudwave 测试脚本
#!/bin/bash
# Program:
# test ssb
# History:
# 2023/03/17 junfenghe.cloud@qq.com version:0.0.1
rm -rf ./n*txt
for ((i=1; i<20; i++))
do
cat sql_ssb.sql |./cplus.sh > n${i}.txt
done
- Starrocks 测试脚本
#!/bin/bash
# Program:
# test ssb
# History:
# 2023/03/17 junfenghe.cloud@qq.com version:0.0.1
rm -rf ./n*txt
for ((i=1; i<20; i++))
do
cat sql_ssb.sql | mysql -uroot -P 9030 -h 127.0.0.1 -v -vv -vvv >n${i}.txt
done
- 分析脚本
#!/bin/bash
#Program:
# analysis cloudwave/starrocks logs of base compute
#History:
#2023/02/20 junfenghe.cloud@qq.com version:0.0.1
path=/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/sbin:/usr/local/bin:~/bin
export path
suff="(s)#####"
if [ -z "${1}" ]
then
echo "Please input database'name"
exit -1
fi
if [ -z "$2" ]
then
echo "Please input times of scanner"
exit -f
fi
if [ -n "${3}" ]
then
suff=${3}
fi
for current in ${2}
do
result_time=""
if [ "${1}" == "starrocks" ]
then
for time in $( cat ${current} | grep sec | awk -F '(' '{print $2}' | awk -F ' ' '{print $1}' )
do
result_time="${result_time}${time}${suff}"
done
elif [ "${1}" == "cloudwave" ]
then
for time in $( cat ${current} | grep Elapsed | awk '{print $2}'| sed 's/:/*60+/g'| sed 's/+00\*60//g ; s/+0\*60//g ; s/^0\*60+//g' )
do
result_time="${result_time}${time}${suff}"
done
fi
echo ${result_time%${suff}*}
done
exit 0
- sql_ssb.sql
use ssb100;
select sum(lo_revenue) as revenue from lineorder,dates where lo_orderdate = d_datekey and d_year = 1993 and lo_discount between 1 and 3 and lo_quantity < 25;
select sum(lo_revenue) as revenue from lineorder,dates where lo_orderdate = d_datekey and d_yearmonthnum = 199401 and lo_discount between 4 and 6 and lo_quantity between 26 and 35;
select sum(lo_revenue) as revenue from lineorder,dates where lo_orderdate = d_datekey and d_weeknuminyear = 6 and d_year = 1994 and lo_discount between 5 and 7 and lo_quantity between 26 and 35;
select sum(lo_revenue) as lo_revenue, d_year, p_brand from lineorder ,dates,part,supplier where lo_orderdate = d_datekey and lo_partkey = p_partkey and lo_suppkey = s_suppkey and p_category = 'MFGR#12' and s_region = 'AMERICA' group by d_year, p_brand order by d_year, p_brand;
select sum(lo_revenue) as lo_revenue, d_year, p_brand from lineorder,dates,part,supplier where lo_orderdate = d_datekey and lo_partkey = p_partkey and lo_suppkey = s_suppkey and p_brand between 'MFGR#2221' and 'MFGR#2228' and s_region = 'ASIA' group by d_year, p_brand order by d_year, p_brand;
select sum(lo_revenue) as lo_revenue, d_year, p_brand from lineorder,dates,part,supplier where lo_orderdate = d_datekey and lo_partkey = p_partkey and lo_suppkey = s_suppkey and p_brand = 'MFGR#2239' and s_region = 'EUROPE' group by d_year, p_brand order by d_year, p_brand;
select c_nation, s_nation, d_year, sum(lo_revenue) as lo_revenue from lineorder,dates,customer,supplier where lo_orderdate = d_datekey and lo_custkey = c_custkey and lo_suppkey = s_suppkey and c_region = 'ASIA' and s_region = 'ASIA'and d_year >= 1992 and d_year <= 1997 group by c_nation, s_nation, d_year order by d_year asc, lo_revenue desc;
select c_city, s_city, d_year, sum(lo_revenue) as lo_revenue from lineorder,dates,customer,supplier where lo_orderdate = d_datekey and lo_custkey = c_custkey and lo_suppkey = s_suppkey and c_nation = 'UNITED STATES' and s_nation = 'UNITED STATES' and d_year >= 1992 and d_year <= 1997 group by c_city, s_city, d_year order by d_year asc, lo_revenue desc;
select c_city, s_city, d_year, sum(lo_revenue) as lo_revenue from lineorder,dates,customer,supplier where lo_orderdate = d_datekey and lo_custkey = c_custkey and lo_suppkey = s_suppkey and (c_city='UNITED KI1' or c_city='UNITED KI5') and (s_city='UNITED KI1' or s_city='UNITED KI5') and d_year >= 1992 and d_year <= 1997 group by c_city, s_city, d_year order by d_year asc, lo_revenue desc;
select c_city, s_city, d_year, sum(lo_revenue) as lo_revenue from lineorder,dates,customer,supplier where lo_orderdate = d_datekey and lo_custkey = c_custkey and lo_suppkey = s_suppkey and (c_city='UNITED KI1' or c_city='UNITED KI5') and (s_city='UNITED KI1' or s_city='UNITED KI5') and d_yearmonth = 'Dec1997' group by c_city, s_city, d_year order by d_year asc, lo_revenue desc;
select d_year, c_nation, sum(lo_revenue) - sum(lo_supplycost) as profit from lineorder,dates,customer,supplier,part where lo_orderdate = d_datekey and lo_custkey = c_custkey and lo_suppkey = s_suppkey and lo_partkey = p_partkey and c_region = 'AMERICA' and s_region = 'AMERICA' and (p_mfgr = 'MFGR#1' or p_mfgr = 'MFGR#2') group by d_year, c_nation order by d_year, c_nation;
select d_year, s_nation, p_category, sum(lo_revenue) - sum(lo_supplycost) as profit from lineorder,dates,customer,supplier,part where lo_orderdate = d_datekey and lo_custkey = c_custkey and lo_suppkey = s_suppkey and lo_partkey = p_partkey and c_region = 'AMERICA'and s_region = 'AMERICA' and (d_year = 1997 or d_year = 1998) and (p_mfgr = 'MFGR#1' or p_mfgr = 'MFGR#2') group by d_year, s_nation, p_category order by d_year, s_nation, p_category;
select d_year, s_city, p_brand, sum(lo_revenue) - sum(lo_supplycost) as profit from lineorder,dates,customer,supplier,part where lo_orderdate = d_datekey and lo_custkey = c_custkey and lo_suppkey = s_suppkey and lo_partkey = p_partkey and c_region = 'AMERICA'and s_nation = 'UNITED STATES' and (d_year = 1997 or d_year = 1998) and p_category = 'MFGR#14' group by d_year, s_city, p_brand order by d_year, s_city, p_brand;
七镜还将带来Cloudwave 4.0 集群版 VS Starrocks 3.0 集群版 在 1T SSB数据集上的评测。
网友评论