SparkSQL常用操作

作者: BIGUFO | 来源:发表于2017-03-31 11:45 被阅读554次

     1、从json文件创建dataFrame

    val df: DataFrame = sqlContext.read.json("hdfs://master:9000/user/spark/data/people.json")

    val people = df.registerTempTable("person")

    val teenegers: DataFrame = sqlContext.sql("select name,age from person")

    teenegers.map(x => "name:" + x(0)+ " " + "age:" + x(1)).collect().foreach(println)

    2、从parquet文件创建dataFrame

    val df: DataFrame = sqlContext.read.parquet("hdfs://master:9000/user/spark/data/namesAndAges.parquet")

    val people = df.registerTempTable("person")

    val teenegers: DataFrame = sqlContext.sql("select name,age from person")

    teenegers.map(x => "name:" + x(0)+ " " + "age:" + x(1)).collect().foreach(println)

    3、从普通RDD创建dataFrame_1

    val people = sc.textFile("hdfs://master:9000/user/spark/data/people.txt").map(_.split(",")).map(p => Person(p(0), p(1).trim.toInt)).toDF

    people.registerTempTable("people")

    val teenagers = sqlContext.sql("select name,age from people")

    teenagers.map(x => "name:" + x(0)+ " " + "age:" + x(1)).collect().foreach(println)

    4、从普通RDD创建dataFrame_2

    val people = sc.textFile("hdfs://master:9000/user/spark/data/people.txt")

    val schemaString = "name age"

    import org.apache.spark.sql.Row

    import org.apache.spark.sql.types.{StructType,StructField,StringType}

    val schema = StructType(schemaString.split(" ").map(fieldName => StructField(fieldName,StringType,true)))

    val rowRDD = people.map(_.split(",")).map(x => Row(x(0),x(1).trim))

    val df: DataFrame = sqlContext.createDataFrame(rowRDD,schema)

    df.registerTempTable("people")val teenagers = sqlContext.sql("select name,age from people")

    teenagers.map(x => "name:" + x(0)+ " " + "age:" + x(1)).collect().foreach(println)

    5、测试dataframe的read和save方法(注意load方法默认是加载parquet文件)

    val df = sqlContext.read.load("hdfs://master:9000/user/spark/data/namesAndAges.parquet")

    df.select("name").write.save("hdfs://master:9000/user/spark/data/name.parquet")

    6、测试dataframe的read和save方法(可通过手动设置数据源和保存测mode)

    val df =sqlContext.read.format("json").load("hdfs://master:9000/user/spark/ data/people.json")

    df.select("age").write.format("parquet").mode(SaveMode.Append).save("hdfs://master:9000/user/spark/data/ages.parquet")

    7、直接使用sql查询数据源

    val df = sqlContext.sql("SELECT * FROM parquet.`hdfs://master:9000/user/spark/data/ages.parquet`")

    df.map(x => "name:" + x(0)).foreach(println)

    8、parquest文件的读写

    val people = sc.textFile("hdfs://master:9000/user/spark/data/people.txt").toDF

    people.write.mode(SaveMode.Overwrite).parquet("hdfs://master:9000/user/spark/data/people.parquet")

    val parquetFile = sqlContext.read.parquet("hdfs://master:9000/user/spark/data/people.parquet")

    parquetFile.registerTempTable("parquetFile")

    val teenagers = sqlContext.sql("SELECT name FROM parquetFile")

    teenagers.map(t => "Name: " + t(0)).collect().foreach(println)

    9、Schema Merging

    val df1 = sc.makeRDD(1 to 5).map(i => (i, i * 2)).toDF("single", "double")

    df1.write.mode(SaveMode.Overwrite).parquet("hdfs://master:9000/user/spark/data/test_table/key=1")

    df2 = sc.makeRDD(6 to 10).map(i => (i, i * 3)).toDF("single", "triple")

    df2.write.mode(SaveMode.Overwrite).parquet("hdfs://master:9000/user/spark/data/test_table/key=2")

    df3 = sqlContext.read.option("mergeSchema", "true").parquet("hdfs://master:9000/user/spark/data/test_table")

    df3.printSchema()

    df3.show()

    10、hive metastore

    val sqlContext = new HiveContext(sc)sqlContext.setConf("spark.sql.shuffle.partitions","5")

    sqlContext.sql("use my_hive")

    sqlContext.sql("create table if not exists sogouInfo (time STRING,id STRING,webAddr STRING,downFlow INT,upFlow INT,url STRING) row format delimited fields terminated by '\t'")

    sqlContext.sql("LOAD DATA LOCAL INPATH '/root/testData/SogouQ1.txt' overwrite INTO TABLE sogouInfo")

    sqlContext.sql("select " +"count(distinct id) as c " +"from sogouInfo " +"group by time order by c desc limit 10").collect().foreach(println)

    11、df from jdbc eg:mysql

    val sqlContext = new SQLContext(sc)

    val jdbcDF = sqlContext.read.format("jdbc").options(Map("driver" -> "com.mysql.jdbc.Driver","url" -> "jdbc:mysql://192.168.0.65:3306/test?user=root&password=root","dbtable" -> "trade_total_info_copy")).load()

    jdbcDF.registerTempTable("trade_total_info_copy")

    sqlContext.sql("select * from trade_total_info_copy").foreach(println)


    相关文章

      网友评论

        本文标题:SparkSQL常用操作

        本文链接:https://www.haomeiwen.com/subject/jeeauttx.html