本文将通过描述 Spark RDD 的五大核心要素来描述 RDD,若希望更全面了解 RDD 的知识,请移步 RDD 论文:RDD:基于内存的集群计算容错抽象
Spark 的五大核心要素包括:
- partition
- partitioner
- compute func
- dependency
- preferredLocation
下面一一来介绍
(一): partition
partition 个数怎么定
RDD 由若干个 partition 组成,共有三种生成方式:
- 从 Scala 集合中创建,通过调用
SparkContext#makeRDD
或SparkContext#parallelize
- 加载外部数据来创建 RDD,例如从 HDFS 文件、mysql 数据库读取数据等
- 由其他 RDD 执行 transform 操作转换而来
那么,在使用上述方法生成 RDD 的时候,会为 RDD 生成多少个 partition 呢?一般来说,加载 Scala 集合或外部数据来创建 RDD 时,是可以指定 partition 个数的,若指定了具体值,那么 partition 的个数就等于该值,比如:
val rdd1 = sc.makeRDD( scalaSeqData, 3 ) //< 指定 partition 数为3
val rdd2 = sc.textFile( hdfsFilePath, 10 ) //< 指定 partition 数为10
若没有指定具体的 partition 数时的 partition 数为多少呢?
- 对于从 Scala 集合中转换而来的 RDD:默认的 partition 数为 defaultParallelism,该值在不同的部署模式下不同:
- Local 模式:本机 cpu cores 的数量
- Mesos 模式:8
- Yarn:max(2, 所有 executors 的 cpu cores 个数总和)
- 对于从外部数据加载而来的 RDD:默认的 partition 数为
min(defaultParallelism, 2)
- 对于执行转换操作而得到的 RDD:视具体操作而定,如 map 得到的 RDD 的 partition 数与 父 RDD 相同;union 得到的 RDD 的 partition 数为父 RDDs 的 partition 数之和...
partition 的定义
我们常说,partition 是 RDD 的数据单位,代表了一个分区的数据。但这里千万不要搞错了,partition 是逻辑概念,是代表了一个分片的数据,而不是包含或持有一个分片的数据。
真正直接持有数据的是各个 partition 对应的迭代器,要再次注意的是,partition 对应的迭代器访问数据时也不是把整个分区的数据一股脑加载持有,而是像常见的迭代器一样一条条处理。举个例子,我们把 HDFS 上10G 的文件加载到 RDD 做处理时,并不会消耗10G 的空间,如果没有 shuffle 操作(shuffle 操作会持有较多数据在内存),那么这个操作的内存消耗是非常小的,因为在每个 task 中都是一条条处理处理的,在某一时刻只会持有一条数据。这也是初学者常有的理解误区,一定要注意 Spark 是基于内存的计算,但不会傻到什么时候都把所有数据全放到内存。
让我们来看看 Partition 的定义帮助理解:
trait Partition extends Serializable {
def index: Int
override def hashCode(): Int = index
}
在 trait Partition 中仅包含返回其索引的 index 方法。很多具体的 RDD 也会有自己实现的 partition,比如:
KafkaRDDPartition 提供了获取 partition 所包含的 kafka msg 条数的方法
class KafkaRDDPartition(
val index: Int,
val topic: String,
val partition: Int,
val fromOffset: Long,
val untilOffset: Long,
val host: String,
val port: Int
) extends Partition {
/** Number of messages this partition refers to */
def count(): Long = untilOffset - fromOffset
}
UnionRDD 的 partition 类 UnionPartition 提供了获取依赖的父 partition 及获取优先位置的方法
private[spark] class UnionPartition[T: ClassTag](
idx: Int,
@transient private val rdd: RDD[T],
val parentRddIndex: Int,
@transient private val parentRddPartitionIndex: Int)
extends Partition {
var parentPartition: Partition = rdd.partitions(parentRddPartitionIndex)
def preferredLocations(): Seq[String] = rdd.preferredLocations(parentPartition)
override val index: Int = idx
}
partition 与 iterator 方法
RDD 的 def iterator(split: Partition, context: TaskContext): Iterator[T]
方法用来获取 split 指定的 Partition 对应的数据的迭代器,有了这个迭代器就能一条一条取出数据来按 compute chain 来执行一个个transform 操作。iterator 的实现如下:
final def iterator(split: Partition, context: TaskContext): Iterator[T] = {
if (storageLevel != StorageLevel.NONE) {
SparkEnv.get.cacheManager.getOrCompute(this, split, context, storageLevel)
} else {
computeOrReadCheckpoint(split, context)
}
}
def 前加了 final 说明该函数是不能被子类重写的,其先判断 RDD 的 storageLevel 是否为 NONE,若不是,则尝试从缓存中读取,读取不到则通过计算来获取该 Partition 对应的数据的迭代器;若是,尝试从 checkpoint 中获取 Partition 对应数据的迭代器,若 checkpoint 不存在则通过计算来获取。
刚刚介绍了如果从 cache 或者 checkpoint 无法获得 Partition 对应的数据的迭代器,则需要通过计算来获取,这将会调用到 def compute(split: Partition, context: TaskContext): Iterator[T]
方法,各个 RDD 最大的不同也体现在该方法中。后文会详细介绍该方法
(二): partitioner
partitioner 即分区器,说白了就是决定 RDD 的每一条消息应该分到哪个分区。但只有 k, v 类型的 RDD 才能有 partitioner(当然,非 key, value 类型的 RDD 的 partitioner 为 None。
partitioner 为 None 的 RDD 的 partition 的数据要么对应数据源的某一段数据,要么来自对父 RDDs 的 partitions 的处理结果。
我们先来看看 Partitioner 的定义及注释说明:
abstract class Partitioner extends Serializable {
//< 返回 partition 数量
def numPartitions: Int
//< 返回 key 应该属于哪个 partition
def getPartition(key: Any): Int
}
Partitioner 共有两种实现,分别是 HashPartitioner 和 RangePartitioner
HashPartitioner
先来看 HashPartitioner 的实现(省去部分代码):
class HashPartitioner(partitions: Int) extends Partitioner {
require(partitions >= 0, s"Number of partitions ($partitions) cannot be negative.")
def numPartitions: Int = partitions
def getPartition(key: Any): Int = key match {
case null => 0
case _ => Utils.nonNegativeMod(key.hashCode, numPartitions)
}
...
}
// x 对 mod 求于,若结果为正,则返回该结果;若结果为负,返回结果加上 mod
def nonNegativeMod(x: Int, mod: Int): Int = {
val rawMod = x % mod
rawMod + (if (rawMod < 0) mod else 0)
}
numPartitions
直接返回主构造函数中传入的 partitions 参数,之前在有本书里看到说 Partitioner 不仅决定了一条 record 应该属于哪个 partition,还决定了 partition 的数量,其实这句话的后半段的有误的,Partitioner 并不能决定一个 RDD 的 partition 数,Partitioner 方法返回的 partition 数是直接返回外部传入的值。
getPartition
方法也不复杂,主要做了:
- 为参数 key 计算一个 hash 值
- 若该哈希值对 partition 个数取余结果为正,则该结果即该 key 归属的 partition index;否则,以该结果加上 partition 个数为 partition index
从上面的分析来看,当 key, value 类型的 RDD 的 key 的 hash 值分布不均匀时,会导致各个 partition 的数据量不均匀,极端情况下一个 partition 会持有整个 RDD 的数据而其他 partition 则不包含任何数据,这显然不是我们希望看到的,这时就需要 RangePartitioner 出马了。
RangePartitioner
上文也提到了,HashPartitioner 可能会导致各个 partition 数据量相差很大的情况。这时,初衷为使各个 partition 数据分布尽量均匀的 RangePartitioner 便有了用武之地。
RangePartitioner 将一个范围内的数据映射到 partition,这样两个 partition 之间要么是一个 partition 的数据都比另外一个大,或者小。RangePartitioner采用水塘抽样算法,比 HashPartitioner 耗时,具体可见:Spark分区器HashPartitioner和RangePartitioner代码详解
欢迎关注我的微信公众号:FunnyBigData
FunnyBigData
网友评论
这里的min(defaultParallelism, 2)似乎指定的是defaultMinPartitions,而具体的partition数量似乎应该根据外部数据的具体情况而定?