Elasticsearch性能优化

作者: GhostStories | 来源:发表于2017-11-27 11:19 被阅读486次
    image

    欢迎访问我的博客查看原文:http://wangnan.tech

    注:文本整理自《ELKstack权威指南》

    目录

    • 批量提交
    • gateway
    • 集群状态维护
    • 缓存
    • 字段数据
    • curator
    • profiler

    批量提交

    在 CRUD 章节,我们已经知道 ES 的数据写入是如何操作的了。喜欢自己动手的读者可能已经迫不及待的自己写了程序开始往 ES 里写数据做测试。这时候大家会发现:程序的运行速度非常一般,即使 ES 服务运行在本机,一秒钟大概也就能写入几百条数据。

    这种速度显然不是 ES 的极限。事实上,每条数据经过一次完整的 HTTP POST 请求和 ES indexing 是一种极大的性能浪费,为此,ES 设计了批量提交方式。在数据读取方面,叫 mget 接口,在数据变更方面,叫 bulk 接口。mget 一般常用于搜索时 ES 节点之间批量获取中间结果集,对于 Elastic Stack 用户,更常见到的是 bulk 接口。

    bulk 接口采用一种比较简朴的数据积累格式,示例如下:

    # curl -XPOST http://127.0.0.1:9200/_bulk -d'
    { "create" : { "_index" : "test", "_type" : "type1"  } }
    { "field1" : "value1" }
    { "delete" : { "_index" : "test", "_type" : "type1" } }
    { "index" : { "_index" : "test", "_type" : "type1", "_id" : "1" } }
    { "field1" : "value2" }
    { "update" : {"_id" : "1", "_type" : "type1", "_index" : "test"} }
    { "doc" : {"field2" : "value2"} }
    '
    

    格式是,每条 JSON 数据的上面,加一行描述性的元 JSON,指明下一行数据的操作类型,归属索引信息等。

    采用这种格式,而不是一般的 JSON 数组格式,是因为接收到 bulk 请求的 ES 节点,就可以不需要做完整的 JSON 数组解析处理,直接按行处理简短的元 JSON,就可以确定下一行数据 JSON 转发给哪个数据节点了。这样,一个固定内存大小的 network buffer 空间,就可以反复使用,又节省了大量 JVM 的 GC。

    事实上,产品级的 logstash、rsyslog、spark 都是默认采用 bulk 接口进行数据写入的。对于打算自己写程序的读者,建议采用 Perl 的 Search::Elasticsearch::Bulk 或者 Python 的 elasticsearch.helpers.* 库。

    bulk size

    在配置 bulk 数据的时候,一般需要注意的就是请求体大小(bulk size)。

    这里有一点细节上的矛盾,我们知道,HTTP 请求,是可以通过 HTTP 状态码 100 Continue 来持续发送数据的。但对于 ES 节点接收 HTTP 请求体的 Content-Length 来说,是按照整个大小来计算的。所以,首先,要确保 bulk 数据不要超过 http.max_content_length 设置。

    那么,是不是尽量让 bulk size 接近这个数值呢?当然不是。

    依然是请求体的问题,因为请求体需要全部加载到内存,而 JVM Heap 一共就那么多(按 31GB 算),过大的请求体,会挤占其他线程池的空间,反而导致写入性能的下降。

    再考虑网卡流量,磁盘转速的问题,所以一般来说,建议 bulk 请求体的大小,在 15MB 左右,通过实际测试继续向上探索最合适的设置。

    注意:这里说的 15MB 是请求体的字节数,而不是程序里里设置的 bulk size。bulk size 一般指数据的条目数。不要忘了,bulk 请求体中,每条数据还会额外带上一行元 JSON。

    以 logstash 默认的 bulk_size => 5000 为例,假设单条数据平均大小 200B ,一次 bulk 请求体的大小就是 1.5MB。那么我们可以尝试 bulk_size => 50000;而如果单条数据平均大小是 20KB,一次 bulk 大小就是 100MB,显然超标了,需要尝试下调至 bulk_size => 500

    gateway

    gateway 是 ES 设计用来长期存储索引数据的接口。一般来说,大家都是用本地磁盘来存储索引数据,即 gateway.typelocal

    数据恢复中,有很多策略调整我们已经在之前分片控制小节讲过。除开分片级别的控制以外,gateway 级别也还有一些可优化的地方:

    • gateway.recover_after_nodes
      该参数控制集群在达到多少个节点的规模后,才开始数据恢复任务。这样可以避免集群自动发现的初期,分片不全的问题。

    • gateway.recover_after_time
      该参数控制集群在达到上条配置设置的节点规模后,再等待多久才开始数据恢复任务。

    • gateway.expected_nodes
      该参数设置集群的预期节点总数。在达到这个总数后,即认为集群节点已经完全加载,即可开始数据恢复,不用再等待上条设置的时间。

    注意:gateway 中说的节点,仅包括主节点和数据节点,纯粹的 client 节点是不算在内的。如果你有更明确的选择,也可以按需求写:

    • gateway.recover_after_data_nodes
    • gateway.recover_after_master_nodes
    • gateway.expected_data_nodes
    • gateway.expected_master_nodes

    共享存储上的影子副本

    虽然 ES 对 gateway 使用 NFS,iscsi 等共享存储的方式极力反对,但是对于较大量级的索引的副本数据,ES 从 1.5 版本开始,还是提供了一种节约成本又不特别影响性能的方式:影子副本(shadow replica)。

    首先,需要在集群各节点的 elasticsearch.yml 中开启选项:

    node.enable_custom_paths: true
    

    同时,确保各节点使用相同的路径挂载了共享存储,且目录权限为 Elasticsearch 进程用户可读可写。

    然后,创建索引:

    # curl -XPUT 'http://127.0.0.1:9200/my_index' -d '
    {
        "index" : {
            "number_of_shards" : 1,
            "number_of_replicas" : 4,
            "data_path": "/var/data/my_index",
            "shadow_replicas": true
        }
    }'
    

    针对 shadow replicas ,ES 节点不会做实际的索引操作,而是单纯的每次 flush 时,把 segment 内容 fsync 到共享存储磁盘上。然后 refresh 让其他节点能够搜索该 segment 内容。

    如果你已经决定把数据放到共享存储上了,采用 shadow replicas 还是有一些好处的:

    1. 可以帮助你节省一部分不必要的多副本分片的数据写入压力;
    2. 在节点出现异常,需要在其他节点上恢复副本数据的时候,可以避免不必要的网络数据拷贝。

    但是请注意:主分片节点还是要承担一个副本的写入过程,并不像 Lucene 的 FileReplicator 那样通过复制文件完成,所以达不到完全节省 CPU 的效果。

    shadow replicas 只是一个在某些特定环境下有用的方式。在资源允许的情况下,还是应该使用 local gateway。而另外采用 snapshot 接口来完成数据长期备份到 HDFS 或其他共享存储的需要。

    集群状态维护

    我们都知道,ES 中的 master 跟一般 MySQL、Hadoop 的 master 是不一样的。它即不是写入流量的唯一入口,也不是所有数据的元信息的存放地点。所以,一般来说,ES 的 master 节点负载很轻,集群性能是可以近似认为随着 data 节点的扩展线性提升的。

    但是,上面这句话并不是完全正确的。

    ES 中有一件事情是只有 master 节点能管理的,这就是集群状态(cluster state)。

    集群状态中包括以下信息:

    • 集群层面的设置
    • 集群内有哪些节点
    • 各索引的设置,映射,分析器和别名等
    • 索引内各分片所在的节点位置

    这些信息在集群的任意节点上都存放着,你也可以通过 /_cluster/state 接口直接读取到其内容。注意这最后一项信息,之前我们已经讲过 ES 怎么通过简单地取余知道一条数据放在哪个分片里,加上现在集群状态里又记载了分片在哪个节点上,那么,整个集群里,任意节点都可以知道一条数据在哪个节点上存储了。所以,数据读写才可以发送给集群里任意节点。

    至于修改,则只能由 master 节点完成!显然,集群状态里大部分内容是极少变动的,唯独有一样除外——索引的映射。因为 ES 的 schema-less 特性,我们可以任意写入 JSON 数据,所以索引中随时可能增加新的字段。这个时候,负责容纳这条数据的主分片所在的节点,会暂停写入操作,将字段的映射结果传递给 master 节点;master 节点合并这段修改到集群状态里,发送新版本的集群状态到集群的所有节点上。然后写入操作才会继续。一般来说,这个操作是在一二十毫秒内就可以完成,影响也不大。

    但是也有一些情况会是例外。

    批量新索引创建

    在较大规模的 Elastic Stack 应用场景中,这是比较常见的一个情况。因为 Elastic Stack 建议采用日期时间作为索引的划分方式,所以定时(一般是每天),会统一产生一批新的索引。而前面已经讲过,ES 的集群状态每次更新都是阻塞式的发布到全部节点上以后,节点才能继续后续处理。

    这就意味着,如果在集群负载较高的时候,批量新建新索引,可能会有一个显著的阻塞时间,无法写入任何数据。要等到全部节点同步完成集群状态以后,数据写入才能恢复。

    不巧的是,中国使用的是北京时间,UTC +0800。也就是说,默认的 Elastic Stack 新建索引时间是在早上 8 点。这个时间点一般日志写入量已经上涨到一定水平了(当然,晚上 0 点的量其实也不低)。

    对此,可以通过定时任务,每天在最低谷的早上三四点,提前通过 POST mapping 的方式,创建好之后几天的索引。就可以避免这个问题了。

    如果你的日志是比较严重的非结构化数据,这个问题在 2.0 版本后会变得更加严重。 Elasticsearch 从 2.0 版本开始,对 mapping 更新做了重构。为了防止字段类型冲突和减少 master 定期下发全量 cluster state 导致的大流量压力,新的实现和旧实现的区别在:

    • 过去:每次 bulk 请求,本地生成索引后,将更新的 mapping,按照 _type 为单位构成 mapping 更新请求发给 master;
    • 现在:每次 bulk 请求,遍历每条数据,将每条数据要更新的 mapping,都单独发给 master,等到 master 通知完全集群,本地才能生成这一条数据的索引。

    也就是说,一旦你日志中字段数量较多,在新创建索引的一段时间内,可能长达几十分钟一直被反复锁死!

    过多字段持续更新

    这是另一种常见的滥用。在使用 Elastic Stack 处理访问日志时,为了查询更方便,可能会采用 logstash-filter-kv 插件,将访问日志中的每个 URL 参数,都切分成单独的字段。比如一个 "/index.do?uid=1234567890&action=payload" 的 URL 会被转换成如下 JSON:

      "urlpath" : "/index.do",
      "urlargs" : {
        "uid" : "1234567890",
        "action" : "payload",
        ...
      }
    

    但是,因为集群状态是存在所有节点的内存里的,一旦 URL 参数过多,ES 节点的内存就被大量用于存储字段映射内容。这是一个极大的浪费。如果碰上 URL 参数的键内容本身一直在变动,直接撑爆 ES 内存都是有可能的!

    以上是真实发生的事件,开发人员莫名的选择将一个 UUID 结果作为 key 放在 URL 参数里。直接导致 ES 集群 master 节点全部 OOM。

    如果你在 ES 日志中一直看到有新的 updating mapping [logstash-2015.06.01] 字样出现的话,请郑重考虑一下自己是不是用的上如此细分的字段列表吧。

    好,三秒钟过去,如果你确定一定以及肯定还要这么做,下面是一个变通的解决办法。

    nested object

    用 nested object 来存放 URL 参数的方法稍微复杂,但还可以接受。单从 JSON 数据层面看,新方式的数据结构如下:

      "urlargs": [
        { "key": "uid", "value": "1234567890" },
        { "key": "action", "value": "payload" },
        ...
      ]
    

    没错,看起来就是一个数组。但是 JSON 数组在 ES 里是有两种处理方式的。

    如果直接写入数组,ES 在实际索引过程中,会把所有内容都平铺开,变成 Arrays of Inner Objects。整条数据实际类似这样的结构:

    {
      "urlpath" : ["/index.do"],
      "urlargs.key" : ["uid", "action", ...],
      "urlargs.value" : ["1234567890", "payload", ...]
    

    这种方式最大的问题是,当你采用 urlargs.key:"uid" AND urlargs.value:"0987654321" 语句意图搜索一个 uid=0987654321 的请求时,实际是整个 URL 参数中任意一处 value 为 0987654321 的,都会命中。

    要想达到正确搜索的目的,需要在写入数据之前,指定 urlargs 字段的映射类型为 nested object。命令如下:

    curl -XPOST http://127.0.0.1:9200/logstash-2015.06.01/_mapping -d '{
      "accesslog" : {
        "properties" : {
          "urlargs" : {
            "type" : "nested",
            "properties" : {
                "key" : { "type" : "string", "index" : "not_analyzed", "doc_values" : true },
                "value" : { "type" : "string", "index" : "not_analyzed", "doc_values" : true }
            }
          }
        }
      } 
    }'
    

    这样,数据实际是类似这样的结构:

    {
      "urlpath" : ["/index.do"],
    },
    {
      "urlargs.key" : ["uid"],
      "urlargs.value" : ["1234567890"],
    },
    {
      "urlargs.key" : ["action"],
      "urlargs.value" : ["payload"],
    }
    

    当然,nested object 节省字段映射的优势对应的是它在使用的复杂。Query 和 Aggs 都必须使用专门的 nested query 和 nested aggs 才能正确读取到它。

    nested query 语法如下:

    curl -XPOST http://127.0.0.1:9200/logstash-2015.06.01/accesslog/_search -d '
    {
      "query": {
        "bool": {
          "must": [
            { "match": { "urlpath" : "/index.do" }}, 
            {
              "nested": {
                "path": "urlargs", 
                "query": {
                  "bool": {
                    "must": [ 
                      { "match": { "urlargs.key": "uid" }},
                      { "match": { "urlargs.value": "1234567890" }}
                    ]
            }}}}
          ]
    }}}'
    

    nested aggs 语法如下:

    curl -XPOST http://127.0.0.1:9200/logstash-2015.06.01/accesslog/_search -d '
    {
      "aggs": {
        "topnuid": {
          "nested": {
            "path": "urlargs"
          },
          "aggs": {
            "uid": {
              "filter": {
                "term": {
                  "urlargs.key": "uid",
                }
              },
              "aggs": {
                "topn": {
                  "terms": { 
                    "field": "urlargs.value"
                  }
                }
              }
            }
          }
        }
      }
    }'
    

    缓存

    ES 内针对不同阶段,设计有不同的缓存。以此提升数据检索时的响应性能。主要包括节点层面的 filter cache 和分片层面的 request cache。下面分别讲述。

    filter cache

    ES 的 query DSL 在 2.0 版本之前分为 query 和 filter 两种,很多检索语法,是同时存在 query 和 filter 里的。比如最常用的 term、prefix、range 等。怎么选择是使用 query 还是 filter 成为很多用户头疼的难题。于是从 2.0 版本开始,ES 干脆合并了 filter 统一归为 query。但是具体的检索语法本身,依然有 query 和 filter 上下文的区别。ES 依靠这个上下文判断,来自动决定是否启用 filter cache。

    query 跟 filter 上下文的区别,简单来说:

    • query 是要相关性评分的,filter 不要;
    • query 结果无法缓存,filter 可以。

    所以,选择也就出来了:

    • 全文搜索、评分排序,使用 query;
    • 是非过滤,精确匹配,使用 filter。

    不过我们要怎么写,才能让 ES 正确判断呢?看下面这个请求:

    # curl -XGET http://127.0.0.1:9200/_search -d '
    {
        "query": {
            "bool": {
                "must_not": [
                    { "match": { "title": "Search" } }
                ],
                "must": [
                    { "match": { "content": "Elasticsearch" } }
                ],
                "filter": [
                    { "term":  { "status": "published" } },
                    { "range": { "publish_date": { "gte": "2015-01-01" } } }
                ]
            }
        }
    }'
    

    在这个请求中,

    1. ES 先看到一个 query,那么进入 query 上下文。
    2. 然后在 bool 里看到一个 must_not,那么改进入 filter 上下文,这个有关 title 字段的查询不参与评分。
    3. 然后接着是一个 mustmatch,这个又属于 query 上下文,这个有关 content 字段的查询会影响评分。
    4. 最后碰到 filter,还属于 filter 上下文,这个有关 status 和 publish_date 字段的查询不参与评分。

    需要注意的是,filter cache 是节点层面的缓存设置,每个节点上所有数据在响应请求时,是共用一个缓存空间的。当空间用满,按照 LRU 策略淘汰掉最冷的数据。

    可以用 indices.cache.filter.size 配置来设置这个缓存空间的大小,默认是 JVM 堆的 10%,也可以设置一个绝对值。注意这是一个静态值,必须在 elasticsearch.yml 中提前配置。

    shard request cache

    ES 还有另一个分片层面的缓存,叫 shard request cache。5.0 之前的版本中,request cache 的用途并不大,因为 query cache 要起作用,还有几个先决条件:

    1. 分片数据不再变动,也就是对当天的索引是无效的(如果 refresh_interval 很大,那么在这个间隔内倒也算有效);
    2. 使用了 "now" 语法的请求无法被缓存,因为这个是要即时计算的;
    3. 缓存的键是请求的整个 JSON 字符串,整个字符串发生任何字节变动,缓存都无效。

    以 Elastic Stack 场景来说,Kibana 里几乎所有的请求,都是有 @timestamp 作为过滤条件的,而且大多数是以最近 N 小时/分钟这样的选项,也就是说,页面每次刷新,发出的请求 JSON 里的时间过滤部分都是在变动的。query cache 在处理 Kibana 发出的请求时,完全无用。

    而 5.0 版本的一大特性,叫 instant aggregation。解决了这个先决条件的一大阻碍。

    在之前的版本,Elasticsearch 接收到请求之后,直接把请求原样转发给各分片,由各分片所在的节点自行完成请求的解析,进行实际的搜索操作。所以缓存的键是原始 JSON 串。

    而 5.0 的重构后,接收到请求的节点先把请求的解析做完,发送到各节点的是统一拆分修改好的请求,这样就不再担心 JSON 串多个空格啥的了。

    其次,上面说的『拆分修改』是怎么回事呢?

    比如,我们在 Kibana 里搜索一个最近 7 天(@timestamp:["now-7d" TO "now"])的数据,ES 就可以根据按天索引的判断,知道从 6 天前到昨天这 5 个索引是肯定全覆盖的。那么这个横跨 7 天的 date range query 就变成了 5 个 match_all query 加 2 个短时间的 date_range query。

    现在你的仪表盘过 5 分钟自动刷新一次,再提交上来一次最近 7 天的请求,中间这 5 个 match_all 就完全一样了,直接从 request cache 返回即可,需要重新请求的,只有两头真正在变动的 date_range 了。

    注1:match_all 不用遍历倒排索引,比直接查询 @timestamp:* 要快很多。
    注2:判断覆盖修改为 match_all 并不是真的按照索引名称,而是 ES 从 2.x 开始提供的 field_stats 接口可以直接获取到 @timestamp 在本索引内的 max/min 值。当然从概念上如此理解也是可以接受的。

    field_stats 接口

    curl -XGET "http://localhost:9200/logstash-2016.11.25/_field_stats?fields=timestamp"
    

    响应结果如下:

    {
        "_shards": {
            "total": 1,
            "successful": 1,
            "failed": 0
        },
        "indices": {
            "logstash-2016.11.25": {
                "fields": {
                    "timestamp": {
                        "max_doc": 1326564,
                        "doc_count": 564633,
                        "density": 42,
                        "sum_doc_freq": 2258532,
                        "sum_total_term_freq": -1,
                        "min_value": "2008-08-01T16:37:51.513Z",
                        "max_value": "2013-06-02T03:23:11.593Z",
                        "is_searchable": "true",
                        "is_aggregatable": "true"
                    }
                }
            }
        }
    }
    

    和 filter cache 一样,request cache 的大小也是以节点级别控制的,配置项名为 indices.requests.cache.size,其默认值为 1%

    字段数据

    字段数据(fielddata),在 Lucene 中又叫 uninverted index。我们都知道,搜索引擎会使用倒排索引(inverted index)来映射单词到文档的 ID 号。而同时,为了提供对文档内容的聚合,Lucene 还可以在运行时将每个字段的单词以字典序排成另一个 uninverted index,可以大大加速计算性能。

    作为一个加速性能的方式,fielddata 当然是被全部加载在内存的时候最为有效。这也是 ES 默认的运行设置。但是,内存是有限的,所以 ES 同时也需要提供对 fielddata 内存的限额方式:

    • indices.fielddata.cache.size
      节点用于 fielddata 的最大内存,如果 fielddata 达到该阈值,就会把旧数据交换出去。该参数可以设置百分比或者绝对值。默认设置是不限制,所以强烈建议设置该值,比如 10%
    • indices.fielddata.cache.expire
      进入 fielddata 内存中的数据多久自动过期。注意,因为 ES 的 fielddata 本身是一种数据结构,而不是简单的缓存,所以过期删除 fielddata 是一个非常消耗资源的操作。ES 官方在文档中特意说明,这个参数绝对绝对不要设置!

    Circuit Breaker

    Elasticsearch 在 total,fielddata,request 三个层面上都设计有 circuit breaker 以保护进程不至于发生 OOM 事件。在 fielddata 层面,其设置为:

    • indices.breaker.fielddata.limit
      默认是 JVM 堆内存大小的 60%。注意,为了让设置正常发挥作用,如果之前设置过 indices.fielddata.cache.size 的,一定要确保 indices.breaker.fielddata.limit 的值大于 indices.fielddata.cache.size 的值。否则的话,fielddata 大小一到 limit 阈值就报错,就永远道不了 size 阈值,无法触发对旧数据的交换任务了。

    doc values

    但是相比较集群庞大的数据量,内存本身是远远不够的。为了解决这个问题,ES 引入了另一个特性,可以对精确索引的字段,指定 fielddata 的存储方式。这个配置项叫:doc_values

    所谓 doc_values,其实就是在 ES 将数据写入索引的时候,提前生成好 fielddata 内容,并记录到磁盘上。因为 fielddata 数据是顺序读写的,所以即使在磁盘上,通过文件系统层的缓存,也可以获得相当不错的性能。

    注意:因为 doc_values 是在数据写入时即生成内容,所以,它只能应用在精准索引的字段上,因为索引进程没法知道后续会有什么分词器生成的结果。

    由于在 Elastic Stack 场景中,doc_values 的使用极其频繁,到 Elasticsearch 5.0 以后,这两者的区别被彻底强化成两个不同字段类型:textkeyword

    "myfieldname": {
        "type": "text"
    }
    

    等同于过去的:

        "myfieldname": {
            "type": "string",
            "fielddata": false
        }
    

    "myfieldname": {
        "type": "keyword"
    }
    

    等同于过去的:

        "myfieldname": {
            "type": "string",
            "index": "not_analyzed",
            "doc_values": true
        }
    

    也就是说,以后的用户,已经不太需要在意 fielddata 的问题了。不过依然有少数情况,你会需要对分词字段做聚合统计的话,你可以在自己接受范围内,开启这个特性:

    {
        "mappings": {
            "my_type": {
                "properties": {
                    "message": {
                        "type": "text",
                        "fielddata": true,
                        "fielddata_frequency_filter": {
                            "min": 0.1,
                            "max": 1.0,
                            "min_segment_size": 500
                        }
                    }
                }
            }
        }
    }
    

    你可以看到在上面加了一段 fielddata_frequency_filter 配置,这个配置是 segment 级别的。上面示例的意思是:只有这个 segment 里的文档数量超过 500 个,而且含有该字段的文档数量占该 segment 里的文档数量比例超过 10% 时,才加载这个 segment 的 fielddata。

    下面是一个可能有用的对分词字段做聚合的示例:

    curl -XPOST 'http://localhost:9200/logstash-2016.07.18/logs/_search?pretty&terminate_after=10000&size=0' -d '
    {
        "aggs": {
            "group": {
                "terms": {
                    "field": "punct"
                },
                "aggs": {
                    "keyword": {
                        "significant_terms": {
                            "size": 2,
                            "field": "message"
                        },
                        "aggs": {
                            "hit": {
                                "top_hits": {
                                    "_source": {
                                        "include": [ "message" ]
                                    },
                                    "size":1
                                }
                            }
                        }
                    }
                }
            }
        }
    }'
    

    这个示例可以对经过了 logstash-filter-punct 插件处理的数据,获取每种 punct 类型日志的关键词和对应的代表性日志原文。其效果类似 Splunk 的事件模式功能:

    [图片上传失败...(image-b0b69f-1511752650964)]

    curator

    如果经过之前章节的一系列优化之后,数据确实超过了集群能承载的能力,除了拆分集群以外,最后就只剩下一个办法了:清除废旧索引。

    为了更加方便的做清除数据,合并 segment,备份恢复等管理任务,Elasticsearch 在提供相关 API 的同时,另外准备了一个命令行工具,叫 curator 。curator 是 Python 程序,可以直接通过 pypi 库安装:

    pip install elasticsearch-curator
    

    注意,是 elasticsearch-curator 不是 curator。PyPi 原先就有另一个项目叫这个名字

    参数介绍

    和 Elastic Stack 里其他组件一样,curator 也是被 Elastic.co 收购的原开源社区周边。收编之后同样进行了一次重构,命令行参数从单字母风格改成了长单词风格。新版本的 curator 命令可用参数如下:

    Usage: curator [OPTIONS] COMMAND [ARGS]...

    Options 包括:

    --host TEXT Elasticsearch host.
    --url_prefix TEXT Elasticsearch http url prefix.
    --port INTEGER Elasticsearch port.
    --use_ssl Connect to Elasticsearch through SSL.
    --http_auth TEXT Use Basic Authentication ex: user:pass
    --timeout INTEGER Connection timeout in seconds.
    --master-only Only operate on elected master node.
    --dry-run Do not perform any changes.
    --debug Debug mode
    --loglevel TEXT Log level
    --logfile TEXT log file
    --logformat TEXT Log output format [default|logstash].
    --version Show the version and exit.
    --help Show this message and exit.

    Commands 包括:
    alias Index Aliasing
    allocation Index Allocation
    bloom Disable bloom filter cache
    close Close indices
    delete Delete indices or snapshots
    open Open indices
    optimize Optimize Indices
    replicas Replica Count Per-shard
    show Show indices or snapshots
    snapshot Take snapshots of indices (Backup)

    针对具体的 Command,还可以继续使用 --help 查看该子命令的帮助。比如查看 close 子命令的帮助,输入 curator close --help,结果如下:

    Usage: curator close [OPTIONS] COMMAND [ARGS]...
    
      Close indices
    
    Options:
      --help  Show this message and exit.
    
    Commands:
      indices  Index selection.
    

    常用示例

    在使用 1.4.0 以上版本的 Elasticsearch 前提下,curator 曾经主要的一个子命令 bloom 已经不再需要使用。所以,目前最常用的三个子命令,分别是 close, deleteoptimize,示例如下:

    curator --timeout 36000 --host 10.0.0.100 delete indices --older-than 5 --time-unit days --timestring '%Y.%m.%d' --prefix logstash-mweibo-nginx-
    curator --timeout 36000 --host 10.0.0.100 delete indices --older-than 10 --time-unit days --timestring '%Y.%m.%d' --prefix logstash-mweibo-client- --exclude 'logstash-mweibo-client-2015.05.11'
    curator --timeout 36000 --host 10.0.0.100 delete indices --older-than 30 --time-unit days --timestring '%Y.%m.%d' --regex '^logstash-mweibo-\d+'
    curator --timeout 36000 --host 10.0.0.100 close indices --older-than 7 --time-unit days --timestring '%Y.%m.%d' --prefix logstash-
    curator --timeout 36000 --host 10.0.0.100 optimize --max_num_segments 1 indices --older-than 1 --newer-than 7 --time-unit days --timestring '%Y.%m.%d' --prefix logstash-
    

    这一顿任务,结果是:

    logstash-mweibo-nginx-yyyy.mm.dd 索引保存最近 5 天,logstash-mweibo-client-yyyy.mm.dd 保存最近 10 天,logstash-mweibo-yyyy.mm.dd 索引保存最近 30 天;且所有七天前的 logstash-* 索引都暂时关闭不用;最后对所有非当日日志做 segment 合并优化。

    profiler

    profiler 是 Elasticsearch 5.0 的一个新接口。通过这个功能,可以看到一个搜索聚合请求,是如何拆分成底层的 Lucene 请求,并且显示每部分的耗时情况。

    启用 profiler 的方式很简单,直接在请求里加一行即可:

    curl -XPOST 'http://localhost:9200/_search' -d '{
        "profile": true,
        "query": { ... },
        "aggs": { ... }
    }'
    

    可以看到其中对 query 和 aggs 部分的返回是不太一样的。

    query

    query 部分包括 collectors、rewrite 和 query 部分。对复杂 query,profiler 会拆分 query 成多个基础的 TermQuery,然后每个 TermQuery 再显示各自的分阶段耗时如下:

    "breakdown": {
        "score": 51306,
        "score_count": 4,
        "build_scorer": 2935582,
        "build_scorer_count": 1,
        "match": 0,
        "match_count": 0,
        "create_weight": 919297,
        "create_weight_count": 1,
        "next_doc": 53876,
        "next_doc_count": 5,
        "advance": 0,
        "advance_count": 0
    }
    

    aggs

            "time": "1124.864392ms",
            "breakdown": {
                "reduce": 0,
                "reduce_count": 0,
                "build_aggregation": 1394,
                "build_aggregation_count": 150,
                "initialise": 2883,
                "initialize_count": 150,
                "collect": 1124860115,
                "collect_count": 900
            }
    

    我们可以很明显的看到聚合统计在初始化阶段、收集阶段、构建阶段、汇总阶段分别花了多少时间,遍历了多少数据。

    注意其中 reduce 阶段还没实现完毕,所有都是 0。因为目前 profiler 只能在 shard 级别上做统计。

    collect 阶段的耗时,有助于我们调整对应 aggs 的 collect_mode 参数选择。目前 Elasticsearch 支持 breadth_firstdepth_first 两种方式。

    initialise 阶段的耗时,有助于我们调整对应 aggs 的 execution_hint 参数选择。目前 Elasticsearch 支持 mapglobal_ordinals_low_cardinalityglobal_ordinalsglobal_ordinals_hash 四种选择。在计算离散度比较大的字段统计值时,适当调整该参数,有益于节省内存和提高计算速度。

    对高离散度字段值统计性能很关注的读者,可以关注 https://github.com/elastic/elasticsearch/pull/21626 这条记录的进展。

    (本文完)

    文本整理自《ELKstack权威指南》

    欢迎关注我的微信订阅号:


    欢迎关注我的开发者头条独家号搜索:269166

    相关文章

      网友评论

        本文标题:Elasticsearch性能优化

        本文链接:https://www.haomeiwen.com/subject/jfbrbxtx.html