这篇文章通俗地解释了概率论的两个基石函数:概率分布函数、概率密度函数,建议不熟悉的同学,认真阅读。
1 先从离散型随机变量和连续性随机变量说起
对于如何分辨离散型随机变量和连续性随机变量,在贾俊平老师的《统计学》教材中,给出了这样的区分: 如果随机变量的值都可以逐个列举出来,则为离散型随机变量。如果随机变量X的取值无法逐个列举则为连续型变量。 进一步解释,离散型随机变量是指其数值只能用自然数或整数单位计算的则为离散变量。例如,企业个数,职工人数,设备台数等,只能按计量单位数计数,这种变量的数值一般用计数方法取得。反之,在一定区间内可以任意取值的变量叫连续变量,其数值是连续不断的,相邻两个数值可作无限分割,即可取无限个数值。例如,生产零件的规格尺寸,人体测量的身高,体重,胸围等为连续变量,其数值只能用测量或计量的方法取得。 形象点来解释:: 画一幅画,左边是梯子,右边是斜坡。 像梯子一样能说出有多少层的,可描述的,是离散型随机变量; 像斜坡一样不能说出有多少层阶梯,不可描述的,是连续性随机变量。 需要注意的是,实际操作中梯子的阶高可能很小,看起来很像斜坡,需要放大看。2 离散型随机变量的概率函数,概率分布和分布函数
概率分布函数和概率密度函数之前,我们先来看看概率函数和概率分布是咋回事。为什么我们花这么大的力气去研究这个概念。因为它实在太重要了,为什么呢?在这里,直接引用陈希孺老师在他所著的《概率论与数理统计》这本书中说的: 研究一个随机变量,不只是要看它能取哪些值,更重要的是它取各种值的概率如何! 这句是本文的核心内容,本文的所有概念,包括概率密度,概率分布,概率函数,都是在描述概率! 2.1 概率函数和概率分布 2.1.1 概率函数 概率函数,就是用函数的形式来表达概率。 pi=P(X=ai)(i=1,2,3,4,5,6) 在这个函数里,自变量(X)是随机变量的取值,因变量(pi)是取值的概率。它就代表了每个取值的概率,所以顺理成章的它就叫做了X的概率函数。从公式上来看,概率函数一次只能表示一个取值的概率。比如P(X=1)=1/6,这代表用概率函数的形式来表示,当随机变量取值为1的概率为1/6,一次只能代表一个随机变量的取值。 2.1.1 概率分布 接下来讲概率分布,顾名思义就是概率的分布,这个概率分布还是讲概率的。我认为在理解这个概念时,关键不在于“概率”两个字,而在于“分布”这两个字。为了理解“分布”这个词,我们来看一张图。 离散型随机变量的值和概率的分布列表 在很多教材中,这样的列表都被叫做离散型随机变量的“概率分布”。其实严格来说,它应该叫“离散型随机变量的值分布和值的概率分布列表”,这个名字虽然比“概率分布”长了点,但是肯定好理解了很多。因为这个列表,上面是值,下面是这个取值相应取到的概率,而且这个列表把所有可能出现的情况全部都列出来了! 举个例子吧,一颗6面的骰子,有1,2,3,4,5,6这6个取值,每个取值取到的概率都为1/6。那么你说这个列表是不是这个骰子取值的”概率分布“? 长得挺像的,上面是取值,下面是概率,这应该就是骰子取值的“概率分布”了吧!大错特错!少了一个最重要的条件!对于一颗骰子的取值来说,它列出的不是全部的取值,把6漏掉了!
2.2 分布函数
说完概率分布,就该说说分布函数了。这个分布函数是个简化版的东西!全名应该叫概率分布函数。 看看下图中的分布律,这里的分布律明明就是我们刚刚讲的“概率函数”,完全就是一个东西。但是我知道很多教材就是叫分布律的。 概率分布函数就是把概率函数累加 我们来看看图上的公式,其中的F(x)就代表概率分布函数啦。这个符号的右边是一个长的很像概率函数的公式,但是其中的等号变成了小于等于号的公式。你再往右看看,这是一个一个的概率函数的累加! 发现概率分布函数的秘密了吗?它其实根本不是个新事物,它就是概率函数取值的累加结果!所以它又叫累积概率函数! 概率函数和概率分布函数就像是一个硬币的两面,它们都只是描述概率的不同手段!3 连续型随机变量的概率函数和分布函数
连续型随机变量的“概率函数”换了一个名字,叫做“概率密度函数”。 为啥要这么叫呢?我们还是借用大师的话来告诉你,在陈希孺老师所著的《概率论与数理统计》这本书中, 如果这么解析你还是不太懂的话,看看下面的这个公式: 概率密度函数用数学公式表示就是一个定积分的函数,定积分在数学中是用来求面积的,而在这里,你就把概率表示为面积即可!左边是F(x)连续型随机变量分布函数画出的图形,右边是f(x)连续型随机变量的概率密度函数画出的图像,它们之间的关系就是,概率密度函数是分布函数的导函数。 两张图一对比,你就会发现,如果用右图中的面积来表示概率,利用图形就能很清楚的看出,哪些取值的概率更大!所以,我们在表示连续型随机变量的概率时,用f(x)概率密度函数来表示,是非常好的! 但是,可能读者会有这样的问题: Q:概率密度函数在某一点的值有什么意义? A:比较容易理解的意义,某点的 概率密度函数 即为 概率在该点的变化率(或导数)。很容易误以为 该点概率密度值 为 概率值. 比如: 距离(概率)和速度(概率密度)的关系. 某一点的速度, 不能以为是某一点的距离 没意义,因为距离是从XX到XX的概念 所以, 概率也需要有个区间. 这个区间可以是x的邻域(可以无限趋近于0)。对x邻域内的f(x)进行积分,可以求得这个邻域的面积,就代表了这个邻域所代表这个事件发生的概率。 ———————————————— 版权声明:本文为CSDN博主「anshuai_aw1」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。 原文链接:https://blog.csdn.net/anshuai_aw1/article/details/82626468
网友评论