美文网首页
数据可视化01--matplotlib图表组成元素

数据可视化01--matplotlib图表组成元素

作者: 亦是旅人呐 | 来源:发表于2022-05-30 11:28 被阅读0次

数据可视化的学习参考刘大成老师的《Python数据可视化之matplotlib实践》



plot()函数

功能:展现变量的变化趋势

import matplotlib.pyplot as plt
import numpy as np
# 0.05 - 10,分为1000等份
x = np.linspace(0.05,10,1000)
# 每个x值对应cos()值为y
y = np.cos(x)
plt.plot(x,y,ls="-",lw=2,label="plot figure")
plt.legend()
# jupyter notebook下自动出图
# plt.show()

参数说明:

  • x:x 轴上的数值
  • y:y 轴上的数值
  • ls:折线图的线条风格
  • lw:折线图的线条宽度
  • label:标记图形内容的标签文本
# 更多详细参数,下同,函数名替换即可
help(plt.plot)
Help on function plot in module matplotlib.pyplot:

plot(*args, scalex=True, scaley=True, data=None, **kwargs)
    Plot y versus x as lines and/or markers.
    
    Call signatures::
    
        plot([x], y, [fmt], *, data=None, **kwargs)
        plot([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)
    
    The coordinates of the points or line nodes are given by *x*, *y*.
    
    The optional parameter *fmt* is a convenient way for defining basic
    formatting like color, marker and linestyle. It's a shortcut string
    notation described in the *Notes* section below.
    
    >>> plot(x, y)        # plot x and y using default line style and color
    >>> plot(x, y, 'bo')  # plot x and y using blue circle markers
    >>> plot(y)           # plot y using x as index array 0..N-1
    >>> plot(y, 'r+')     # ditto, but with red plusses
    
    You can use `.Line2D` properties as keyword arguments for more
    control on the appearance. Line properties and *fmt* can be mixed.
    The following two calls yield identical results:
    
    >>> plot(x, y, 'go--', linewidth=2, markersize=12)
    >>> plot(x, y, color='green', marker='o', linestyle='dashed',
    ...      linewidth=2, markersize=12)
    
    When conflicting with *fmt*, keyword arguments take precedence.
    
    
    **Plotting labelled data**
    
    There's a convenient way for plotting objects with labelled data (i.e.
    data that can be accessed by index ``obj['y']``). Instead of giving
    the data in *x* and *y*, you can provide the object in the *data*
    parameter and just give the labels for *x* and *y*::
    
    >>> plot('xlabel', 'ylabel', data=obj)
    
    All indexable objects are supported. This could e.g. be a `dict`, a
    `pandas.DataFame` or a structured numpy array.
    
    
    **Plotting multiple sets of data**
    
    There are various ways to plot multiple sets of data.
    
    - The most straight forward way is just to call `plot` multiple times.
      Example:
    
      >>> plot(x1, y1, 'bo')
      >>> plot(x2, y2, 'go')
    
    - Alternatively, if your data is already a 2d array, you can pass it
      directly to *x*, *y*. A separate data set will be drawn for every
      column.
    
      Example: an array ``a`` where the first column represents the *x*
      values and the other columns are the *y* columns::
    
      >>> plot(a[0], a[1:])
    
    - The third way is to specify multiple sets of *[x]*, *y*, *[fmt]*
      groups::
    
      >>> plot(x1, y1, 'g^', x2, y2, 'g-')
    
      In this case, any additional keyword argument applies to all
      datasets. Also this syntax cannot be combined with the *data*
      parameter.
    
    By default, each line is assigned a different style specified by a
    'style cycle'. The *fmt* and line property parameters are only
    necessary if you want explicit deviations from these defaults.
    Alternatively, you can also change the style cycle using the
    'axes.prop_cycle' rcParam.
    
    
    Parameters
    ----------
    x, y : array-like or scalar
        The horizontal / vertical coordinates of the data points.
        *x* values are optional and default to `range(len(y))`.
    
        Commonly, these parameters are 1D arrays.
    
        They can also be scalars, or two-dimensional (in that case, the
        columns represent separate data sets).
    
        These arguments cannot be passed as keywords.
    
    fmt : str, optional
        A format string, e.g. 'ro' for red circles. See the *Notes*
        section for a full description of the format strings.
    
        Format strings are just an abbreviation for quickly setting
        basic line properties. All of these and more can also be
        controlled by keyword arguments.
    
        This argument cannot be passed as keyword.
    
    data : indexable object, optional
        An object with labelled data. If given, provide the label names to
        plot in *x* and *y*.
    
        .. note::
            Technically there's a slight ambiguity in calls where the
            second label is a valid *fmt*. `plot('n', 'o', data=obj)`
            could be `plt(x, y)` or `plt(y, fmt)`. In such cases,
            the former interpretation is chosen, but a warning is issued.
            You may suppress the warning by adding an empty format string
            `plot('n', 'o', '', data=obj)`.
    
    Other Parameters
    ----------------
    scalex, scaley : bool, optional, default: True
        These parameters determined if the view limits are adapted to
        the data limits. The values are passed on to `autoscale_view`.
    
    **kwargs : `.Line2D` properties, optional
        *kwargs* are used to specify properties like a line label (for
        auto legends), linewidth, antialiasing, marker face color.
        Example::
    
        >>> plot([1,2,3], [1,2,3], 'go-', label='line 1', linewidth=2)
        >>> plot([1,2,3], [1,4,9], 'rs',  label='line 2')
    
        If you make multiple lines with one plot command, the kwargs
        apply to all those lines.
    
        Here is a list of available `.Line2D` properties:
    
      agg_filter: a filter function, which takes a (m, n, 3) float array and a dpi value, and returns a (m, n, 3) array
      alpha: float
      animated: bool
      antialiased or aa: bool
      clip_box: `.Bbox`
      clip_on: bool
      clip_path: [(`~matplotlib.path.Path`, `.Transform`) | `.Patch` | None]
      color or c: color
      contains: callable
      dash_capstyle: {'butt', 'round', 'projecting'}
      dash_joinstyle: {'miter', 'round', 'bevel'}
      dashes: sequence of floats (on/off ink in points) or (None, None)
      drawstyle or ds: {'default', 'steps', 'steps-pre', 'steps-mid', 'steps-post'}, default: 'default'
      figure: `.Figure`
      fillstyle: {'full', 'left', 'right', 'bottom', 'top', 'none'}
      gid: str
      in_layout: bool
      label: object
      linestyle or ls: {'-', '--', '-.', ':', '', (offset, on-off-seq), ...}
      linewidth or lw: float
      marker: marker style
      markeredgecolor or mec: color
      markeredgewidth or mew: float
      markerfacecolor or mfc: color
      markerfacecoloralt or mfcalt: color
      markersize or ms: float
      markevery: None or int or (int, int) or slice or List[int] or float or (float, float)
      path_effects: `.AbstractPathEffect`
      picker: float or callable[[Artist, Event], Tuple[bool, dict]]
      pickradius: float
      rasterized: bool or None
      sketch_params: (scale: float, length: float, randomness: float)
      snap: bool or None
      solid_capstyle: {'butt', 'round', 'projecting'}
      solid_joinstyle: {'miter', 'round', 'bevel'}
      transform: `matplotlib.transforms.Transform`
      url: str
      visible: bool
      xdata: 1D array
      ydata: 1D array
      zorder: float
    
    Returns
    -------
    lines
        A list of `.Line2D` objects representing the plotted data.
    
    See Also
    --------
    scatter : XY scatter plot with markers of varying size and/or color (
        sometimes also called bubble chart).
    
    Notes
    -----
    **Format Strings**
    
    A format string consists of a part for color, marker and line::
    
        fmt = '[marker][line][color]'
    
    Each of them is optional. If not provided, the value from the style
    cycle is used. Exception: If ``line`` is given, but no ``marker``,
    the data will be a line without markers.
    
    Other combinations such as ``[color][marker][line]`` are also
    supported, but note that their parsing may be ambiguous.
    
    **Markers**
    
    =============    ===============================
    character        description
    =============    ===============================
    ``'.'``          point marker
    ``','``          pixel marker
    ``'o'``          circle marker
    ``'v'``          triangle_down marker
    ``'^'``          triangle_up marker
    ``'<'``          triangle_left marker
    ``'>'``          triangle_right marker
    ``'1'``          tri_down marker
    ``'2'``          tri_up marker
    ``'3'``          tri_left marker
    ``'4'``          tri_right marker
    ``'s'``          square marker
    ``'p'``          pentagon marker
    ``'*'``          star marker
    ``'h'``          hexagon1 marker
    ``'H'``          hexagon2 marker
    ``'+'``          plus marker
    ``'x'``          x marker
    ``'D'``          diamond marker
    ``'d'``          thin_diamond marker
    ``'|'``          vline marker
    ``'_'``          hline marker
    =============    ===============================
    
    **Line Styles**
    
    =============    ===============================
    character        description
    =============    ===============================
    ``'-'``          solid line style
    ``'--'``         dashed line style
    ``'-.'``         dash-dot line style
    ``':'``          dotted line style
    =============    ===============================
    
    Example format strings::
    
        'b'    # blue markers with default shape
        'or'   # red circles
        '-g'   # green solid line
        '--'   # dashed line with default color
        '^k:'  # black triangle_up markers connected by a dotted line
    
    **Colors**
    
    The supported color abbreviations are the single letter codes
    
    =============    ===============================
    character        color
    =============    ===============================
    ``'b'``          blue
    ``'g'``          green
    ``'r'``          red
    ``'c'``          cyan
    ``'m'``          magenta
    ``'y'``          yellow
    ``'k'``          black
    ``'w'``          white
    =============    ===============================
    
    and the ``'CN'`` colors that index into the default property cycle.
    
    If the color is the only part of the format string, you can
    additionally use any  `matplotlib.colors` spec, e.g. full names
    (``'green'``) or hex strings (``'#008000'``).

scatter()函数

功能:寻找变量之间的关系

import matplotlib.pyplot as plt
import numpy as np
x = np.linspace(0.05,10,1000)
y = np.random.rand(1000)
plt.scatter(x,y,label="scatter figure")
plt.legend()
# plt.show()

参数说明

  • x:x轴上的数值
  • y:y轴上的数值
  • c:散点图中的标记的颜色
  • label:标记图形内容的标签文本

更多详细参数

help(plt.scatter)

xlim()函数

功能:设置x轴的数值显示范围

x = np.linspace(0.05,10,1000) 
y = np.random.rand(1000)
plt.scatter(x,y,label="scatter figure") 
plt.legend()
plt.xlim(0.05,10) 
plt.ylim(0,1) 

参数说明

  • xmin:x轴上的最小值
  • xmax:x轴上的最大值
  • 平移性:上面的函数功能,调用签名和参数说明同样可以平移到函数 ylim()上

ylim()函数与xlim()函数类似


xlabel()函数

功能:设置 x轴的标签文本

x = np.linspace(0.05,10,1000) 
y = np.sin(x) 
plt.plot(x,y,ls="-.",lw=2,c="c",label="plot figure") 
plt.legend() 
plt.xlabel("x-axis") 
plt.ylabel("y-axis") 

ylabel()与xlabel()函数功能类似


grid()函数

功能:绘制刻度线的网格线

x = np.linspace(0.05,10,1000)
y = np.sin(x)
plt.plot(x,y,ls="-.",lw=2,c="c",label="plot figure")
plt.legend()
plt.grid(linestyle=":",color="r")

参数说明

  • linestyle:网格线的线条风格
  • color:网格线的线条颜色

axhline()函数

功能:绘制平行于x轴的水平参考线

x = np.linspace(0.05,10,1000) 
y = np.sin(x) 
plt.plot(x,y,ls="-.",lw=2,c="c",label="plot figure") 
plt.legend()  
plt.axhline(y=0.0,c="r",ls="--",lw=2) 
plt.axvline(x=4.0,c="r",ls="--",lw=2) 

参数说明

  • y:水平参考线的出发点
  • c:参考线的线条颜色
  • ls:参考线的线条风格
  • lw:参考线的线条宽度
  • 平移性:上面的函数功能,调用签名和参数说明同样可以平移到函数 axvline()上

axvspan()函数

功能:绘制垂直于 x轴的参考区域

x = np.linspace(0.05,10,1000) 
y = np.sin(x) 
plt.plot(x,y,ls="-.",lw=2,c="c",label="plot figure") 
plt.legend() 
plt.axvspan(xmin=4.0,xmax=6.0,facecolor="y",alpha=0.3) 
plt.axhspan(ymin=0.0,ymax=0.5,facecolor="y",alpha=0.3)

参数说明

  • xmin:参考区域的起始位置。
  • xmax:参考区域的终止位置。
  • facecolor:参考区域的填充颜色。
  • alpha:参考区域的填充颜色的透明度。
  • 平移性:上面的函数功能、调用签名和参数说明可以平移到函数 axhspan()上

annotate()函数

功能:添加图形内容细节的指向型注释文本

x = np.linspace(0.05,10,1000) 
y = np.sin(x) 
plt.plot(x,y,ls="-.",lw=2,c="c",label="plot figure") 
plt.legend() 
plt.annotate("maximum", 
             xy=(np.pi/2,1.0), 
             xytext=((np.pi/2)+1.0,.8), 
             weight="bold", 
             color="b", 
             arrowprops=dict(arrowstyle="->",connectionstyle="arc3",color="b")) 
# plt.show()

参数说明

  • string:图形内容的注释文本。
  • xy:被注释图形内容的位置坐标。
  • xytext:注释文本的位置坐标。
  • weight:注释文本的字体粗细风格。
  • color:注释文本的字体颜色。
  • arrowprops:指示被注释内容的箭头的属性字典

text()函数

功能:添加图形内容细节的无指向型注释文本

x = np.linspace(0.05,10,1000) 
y = np.sin(x) 
plt.plot(x,y,ls="-.",lw=2,c="c",label="plot figure") 
plt.legend() 
plt.text(3.10,0.09,"y=sin(x)",weight="bold",color="b")

参数说明

  • x:注释文本内容所在位置的横坐标。
  • y:注释文本内容所在位置的纵坐标。
  • string:注释文本内容。
  • weight:注释文本内容的粗细风格。
  • color:注释文本内容的字体颜色

title()函数

功能:添加图形内容的标题

x = np.linspace(0.05,10,1000) 
y = np.sin(x) 
plt.plot(x,y,ls="-.",lw=2,c="c",label="plot figure") 
plt.legend() 
plt.title("y=sin(x)") 

legend()函数

功能:标示不同图形的文本标签图例

x = np.linspace(0.05,10,1000) 
y = np.sin(x) 
plt.plot(x,y,ls="-.",lw=2,c="c",label="plot figure") 
plt.legend(loc="lower left") 

函数组合应用

import matplotlib.pyplot as plt 
import numpy as np 
 
from matplotlib import cm as cm 
 
# define data 
x = np.linspace(0.5,3.5,100) 
y = np.sin(x) 
y1 = np.random.randn(100) 
 
# scatter figure 
plt.scatter(x,y1,c="0.25",label="scatter figure") 
 
# plot figure 
plt.plot(x,y,ls="--",lw=2,label="plot figure") 

# some clean up(removing chartjunk) 
# turn the top spine and the right spine off 
for spine in plt.gca().spines.keys(): 
    if spine == "top" or spine == "right": 
        plt.gca().spines[spine].set_color("none") 
         
# turn bottom tick for x-axis on 
plt.gca().xaxis.set_ticks_position("bottom")   
# set tick_line position of bottom  
 
# leave left ticks for y-axis on 
plt.gca().yaxis.set_ticks_position("left")   
# set tick_line position of left 

# set x,yaxis limit 
plt.xlim(0.0,4.0) 
plt.ylim(-3.0,3.0) 

# set axes labels 
plt.ylabel("y_axis") 
plt.xlabel("x_axis")

# set x,yaxis grid 
plt.grid(True,ls=":",color="r")

# set axes labels 
plt.ylabel("y_axis") 
plt.xlabel("x_axis")

# set x,yaxis grid 
plt.grid(True,ls=":",color="r")

# add a horizontal line across the axis 
plt.axhline(y=0.0,c="r",ls="--",lw=2) 
 
# add a vertical span across the axis 
plt.axvspan(xmin=1.0,xmax=2.0,facecolor="y",alpha=.3)

# set annotating info 
plt.annotate("maximum",xy=(np.pi/2,1.0), 
             xytext=((np.pi/2)+0.15,1.5),weight="bold",color="r",
             arrowprops=dict(arrowstyle="->",connectionstyle="arc3",color="r")) 
 
plt.annotate("spines",xy=(0.75,-3), 
              xytext=(0.35,-2.25),weight="bold",color="b", 
              arrowprops=dict(arrowstyle="->",connectionstyle="arc3",color="b")) 
 
plt.annotate("",xy=(0,-2.78), 
             xytext=(0.4,-2.32), 
             arrowprops=dict(arrowstyle="->",connectionstyle="arc3",color="b")) 
 
plt.annotate("",xy=(3.5,-2.98), 
             xytext=(3.6,-2.70), 
             arrowprops=dict(arrowstyle="->",connectionstyle="arc3",color="b")) 

# set text info 
plt.text(3.6,-2.70,"'|' is tickline",weight="bold",color="b") 
plt.text(3.6,-2.95,"3.5 is ticklabel",weight="bold",color="b") 
 
# set title 
plt.title("structure of matplotlib") 
 
# set legend 
plt.legend() 

# plt.show()

end~

相关文章

网友评论

      本文标题:数据可视化01--matplotlib图表组成元素

      本文链接:https://www.haomeiwen.com/subject/jkqoprtx.html