前言
一些处理矩阵运算,图像处理算法,直接采用python实现可能速度稍微慢,效率不高,或者为了直接在python中调用其他C++第三方库。 图像,矩阵在python中通常表示为numpy.ndarray
,因此如何在C++中解析numpy对象,numpy的数据如何传递到C++非常关键,解决了这些问题,就可以丝滑的在python numpy和C++中切换,互相调用。
开发、测试环境
- windows 10, 64bit
- Anaconda3, with python 3.7
- Visual Studio 2017
- pycharm
- pybind11
C++ Numpy
image.png image.png image.png image.pngdemo1
- 1d numpy.ndarray
- 2d numpy.ndarray
- 3d numpy.ndarray
C++ numpy传递参数
C++代码
#include<iostream>
#include<pybind11/pybind11.h>
#include<pybind11/numpy.h>
namespace py = pybind11;
/*
1d矩阵相加
*/
py::array_t<double> add_arrays_1d(py::array_t<double>& input1, py::array_t<double>& input2) {
// 获取input1, input2的信息
py::buffer_info buf1 = input1.request();
py::buffer_info buf2 = input2.request();
if (buf1.ndim !=1 || buf2.ndim !=1)
{
throw std::runtime_error("Number of dimensions must be one");
}
if (buf1.size !=buf2.size)
{
throw std::runtime_error("Input shape must match");
}
//申请空间
auto result = py::array_t<double>(buf1.size);
py::buffer_info buf3 = result.request();
//获取numpy.ndarray 数据指针
double* ptr1 = (double*)buf1.ptr;
double* ptr2 = (double*)buf2.ptr;
double* ptr3 = (double*)buf3.ptr;
//指针访问numpy.ndarray
for (int i = 0; i < buf1.shape[0]; i++)
{
ptr3[i] = ptr1[i] + ptr2[i];
}
return result;
}
/*
2d矩阵相加
*/
py::array_t<double> add_arrays_2d(py::array_t<double>& input1, py::array_t<double>& input2) {
py::buffer_info buf1 = input1.request();
py::buffer_info buf2 = input2.request();
if (buf1.ndim != 2 || buf2.ndim != 2)
{
throw std::runtime_error("numpy.ndarray dims must be 2!");
}
if ((buf1.shape[0] != buf2.shape[0])|| (buf1.shape[1] != buf2.shape[1]))
{
throw std::runtime_error("two array shape must be match!");
}
//申请内存
auto result = py::array_t<double>(buf1.size);
//转换为2d矩阵
result.resize({buf1.shape[0],buf1.shape[1]});
py::buffer_info buf_result = result.request();
//指针访问读写 numpy.ndarray
double* ptr1 = (double*)buf1.ptr;
double* ptr2 = (double*)buf2.ptr;
double* ptr_result = (double*)buf_result.ptr;
for (int i = 0; i < buf1.shape[0]; i++)
{
for (int j = 0; j < buf1.shape[1]; j++)
{
auto value1 = ptr1[i*buf1.shape[1] + j];
auto value2 = ptr2[i*buf2.shape[1] + j];
ptr_result[i*buf_result.shape[1] + j] = value1 + value2;
}
}
return result;
}
//py::array_t<double> add_arrays_3d(py::array_t<double>& input1, py::array_t<double>& input2) {
//
// py::buffer_info buf1 = input1.request();
// py::buffer_info buf2 = input2.request();
//
// if (buf1.ndim != 3 || buf2.ndim != 3)
// throw std::runtime_error("numpy array dim must is 3!");
//
// for (int i = 0; i < buf1.ndim; i++)
// {
// if (buf1.shape[i]!=buf2.shape[i])
// {
// throw std::runtime_error("inputs shape must match!");
// }
// }
//
// // 输出
// auto result = py::array_t<double>(buf1.size);
// result.resize({ buf1.shape[0], buf1.shape[1], buf1.shape[2] });
// py::buffer_info buf_result = result.request();
//
// // 指针读写numpy数据
// double* ptr1 = (double*)buf1.ptr;
// double* ptr2 = (double*)buf2.ptr;
// double* ptr_result = (double*)buf_result.ptr;
//
// for (int i = 0; i < buf1.size; i++)
// {
// std::cout << ptr1[i] << std::endl;
// }
//
// /*for (int i = 0; i < buf1.shape[0]; i++)
// {
// for (int j = 0; j < buf1.shape[1]; j++)
// {
// for (int k = 0; k < buf1.shape[2]; k++)
// {
//
// double value1 = ptr1[i*buf1.shape[1] * buf1.shape[2] + k];
// double value2 = ptr2[i*buf2.shape[1] * buf2.shape[2] + k];
//
// double value1 = ptr1[i*buf1.shape[1] * buf1.shape[2] + k];
// double value2 = ptr2[i*buf2.shape[1] * buf2.shape[2] + k];
//
// ptr_result[i*buf1.shape[1] * buf1.shape[2] + k] = value1 + value2;
//
// std::cout << value1 << " ";
//
// }
//
// std::cout << std::endl;
//
// }
// }*/
//
// return result;
//}
/*
numpy.ndarray 相加, 3d矩阵
@return 3d numpy.ndarray
*/
py::array_t<double> add_arrays_3d(py::array_t<double>& input1, py::array_t<double>& input2) {
//unchecked<N> --------------can be non-writeable
//mutable_unchecked<N>-------can be writeable
auto r1 = input1.unchecked<3>();
auto r2 = input2.unchecked<3>();
py::array_t<double> out = py::array_t<double>(input1.size());
out.resize({ input1.shape()[0], input1.shape()[1], input1.shape()[2] });
auto r3 = out.mutable_unchecked<3>();
for (int i = 0; i < input1.shape()[0]; i++)
{
for (int j = 0; j < input1.shape()[1]; j++)
{
for (int k = 0; k < input1.shape()[2]; k++)
{
double value1 = r1(i, j, k);
double value2 = r2(i, j, k);
//下标索引访问 numpy.ndarray
r3(i, j, k) = value1 + value2;
}
}
}
return out;
}
PYBIND11_MODULE(numpy_demo2, m) {
m.doc() = "Simple demo using numpy!";
m.def("add_arrays_1d", &add_arrays_1d);
m.def("add_arrays_2d", &add_arrays_2d);
m.def("add_arrays_3d", &add_arrays_3d);
}
python测试代码
import demo9.numpy_demo2 as numpy_demo2
import numpy as np
var1 = numpy_demo2.add_arrays_1d(np.array([1, 3, 5, 7, 9]),
np.array([2, 4, 6, 8, 10]))
print('-'*50)
print('var1', var1)
var2 = numpy_demo2.add_arrays_2d(np.array(range(0,16)).reshape([4, 4]),
np.array(range(20,36)).reshape([4, 4]))
print('-'*50)
print('var2', var2)
input1 = np.array(range(0, 48)).reshape([4, 4, 3])
input2 = np.array(range(50, 50+48)).reshape([4, 4, 3])
var3 = numpy_demo2.add_arrays_3d(input1,
input2)
print('-'*50)
print('var3', var3)
image.png
demo2—— 图像RGB转 GRAY
RGB图像表示为MxNx3的矩阵, GRAY灰度图像表示为MxN的矩阵。
RGB图像-------numpy.ndarray(data, dtype=np.uint8, shape=[M, N, 3])
GRAY图像-------numpy.ndarray(data, dtype=np.uint8, shape=[M, N, 1])
C++代码
/*
图像RGB 转 GRAY
*/
py::array_t<double> rgb_to_gray(py::array_t<unsigned char>& img_rgb) {
if (img_rgb.ndim()!=3)
{
throw std::runtime_error("RGB image must has 3 channels!");
}
py::array_t<unsigned char> img_gray = py::array_t<unsigned char>(img_rgb.shape()[0] * img_rgb.shape()[1]);
img_gray.resize({ img_rgb.shape()[0], img_rgb.shape()[1] });
auto rgb = img_rgb.unchecked<3>();
auto gray = img_gray.mutable_unchecked<2>();
for (int i = 0; i < img_rgb.shape()[0]; i++)
{
for (int j = 0; j < img_rgb.shape()[1]; j++)
{
auto R = rgb(i, j, 0);
auto G = rgb(i, j, 1);
auto B = rgb(i, j, 2);
auto GRAY = (R * 30 + G * 59 + B * 11 + 50) / 100;
gray(i, j) = static_cast<unsigned char>(GRAY);
}
}
return img_gray;
}
python测试代码
img_rgb = cv2.imread('F:\\lena\\lena_rgb.jpg', cv2.IMREAD_UNCHANGED)
img_gray = numpy_demo2.rgb_to_gray(img_rgb)
plt.imshow(img_gray, cmap=plt.gray())
plt.show()
lena_rgb.jpg
image.png
demo3—— FFT快速傅立叶变换
采用C++代码实现fft变换,调用第三方库——FFTW实现。 FFTW据说是fft计算最快的库。简单起见,将常用函数进行封装。
- 一维FFT
- 二维FFT
C++
#include<iostream>
#include<fftw3.h>
#include<vector>
#include<complex>
#include<pybind11/pybind11.h>
#include<pybind11/numpy.h>
#include"fft_tools.h"
namespace py = pybind11;
py::array_t<std::complex<float>> my_fft1d_complex(py::array_t<std::complex<float>> input) {
if (input.ndim() != 1)
throw std::runtime_error("input dim must be 1");
vector<complex<float>> in, out;
auto r1 = input.unchecked<1>();
for (int i = 0; i < input.size(); i++)
{
in.push_back(r1(i));
}
fft1d(in, out, in.size());
py::array_t<std::complex<float>> result(out.size());
auto r2 = result.mutable_unchecked<1>();
for (int i = 0; i < out.size(); i++)
{
r2(i) = out[i];
}
return result;
}
py::array_t< std::complex<float>> my_fft2d_img(py::array_t<unsigned char>& image) {
if (image.ndim() != 2)
throw std::runtime_error("image dim must is 2!");
std::vector< std::complex<float>> in;
std::vector< std::complex<float>> out;
auto r1 = image.unchecked<2>();
for (int i = 0; i < r1.shape(0); i++)
{
for (int j = 0; j < r1.shape(1); j++)
{
in.push_back({ static_cast<float>(r1(i,j)), 0 });
}
}
fft2d(in, out, image.shape()[0], image.shape()[1]);
py::array_t< std::complex<float>> result = py::array_t< std::complex<float>>(image.size());
result.resize({ image.shape()[0], image.shape()[1] });
auto r2 = result.mutable_unchecked<2>();
int count = 0;
for (int i = 0; i < r1.shape(0); i++)
{
for (int j = 0; j < r1.shape(1); j++)
{
r2(i, j) = out[count];
count++;
}
}
return result;
}
PYBIND11_MODULE(fft_demo, m) {
m.doc() = "Simple fft demo using FFTW";
m.def("my_fft1d_complex", &my_fft1d_complex, py::return_value_policy::reference);
m.def("my_fft2d_img", &my_fft2d_img, py::return_value_policy::reference);
}
fft_tools.h
#ifndef FFT_TOOLS_H_
#define FFT_TOOLS_H_
#if _WIN64
#include<vector>
#include<complex>
#include<fftw3.h>
using namespace std;
void fft1d(const vector<complex<float>>& input, vector<complex<float>>& output, int n);
void fft1d(double * input, double * output, int n);
void fft1d(float * input, float * output, int n);
void fft2d(double * input, double * output, int rows, int cols);
void fft2d(float * input, float * output, int rows, int cols);
void fft2d(const vector<complex<float>>& input, vector<complex<float>>& output, int rows, int cols);
#endif // _WIN64
#endif // !FFT_TOOLS_H_
fft_tools.cpp
#include"fft_tools.h"
using namespace std;
/*
计算1维FFT
http://www.fftw.org/fftw3_doc/Complex-One_002dDimensional-DFTs.html#Complex-One_002dDimensional-DFTs
*/
void fft1d(const vector<complex<float>>& input, vector<complex<float>>& output, int n) {
fftwf_complex *in, *out;
fftwf_plan p;
in = (fftwf_complex*)fftwf_malloc(sizeof(fftwf_complex) * input.size());
out = (fftwf_complex*)fftwf_malloc(sizeof(fftwf_complex) * n);
for (int i = 0; i < input.size(); i++)
{
in[i][0] = input.at(i).real();
in[i][1] = input.at(i).imag();
}
p = fftwf_plan_dft_1d(n, in, out, FFTW_FORWARD, FFTW_ESTIMATE);
fftwf_execute(p); /* repeat as needed */
for (int i = 0; i < n; i++)
{
output.push_back({ out[i][0], out[i][1] });
}
fftwf_destroy_plan(p);
fftwf_free(in);
fftwf_free(out);
}
void fft1d(const vector<complex<double>>& input, vector<complex<double>>& output, int n) {
fftw_complex *in, *out;
fftw_plan p;
in = (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * input.size());
out = (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * n);
for (int i = 0; i < input.size(); i++)
{
in[i][0] = input.at(i).real();
in[i][1] = input.at(i).imag();
}
p = fftw_plan_dft_1d(n, in, out, FFTW_FORWARD, FFTW_ESTIMATE);
fftw_execute(p); /* repeat as needed */
for (int i = 0; i < n; i++)
{
output.push_back({ out[i][0], out[i][1] });
}
fftw_destroy_plan(p);
fftw_free(in);
fftw_free(out);
}
/*
2维 FFT
@param input [in] 输入数据,复数类型, rows*cols
@param output [out] fft2d计算结果, same size as input
@param rows [in] 矩阵行数
@param cols [in] 矩阵列数
http://www.fftw.org/fftw3_doc/Complex-Multi_002dDimensional-DFTs.html#Complex-Multi_002dDimensional-DFTs
*/
void fft2d(const vector<complex<double>>& input, vector<complex<double>>& output, int rows, int cols) {
fftw_complex *in, *out;
fftw_plan p;
in = (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * input.size());
out = (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * rows*cols);
for (int i = 0; i < input.size(); i++)
{
in[i][0] = input.at(i).real();
in[i][1] = input.at(i).imag();
}
p = fftw_plan_dft_2d(rows, cols, in, out, FFTW_FORWARD, FFTW_ESTIMATE);
fftw_execute(p); /* repeat as needed */
int size = rows * cols;
for (int i = 0; i < size; i++)
{
output.push_back({ out[i][0], out[i][1] });
}
fftw_destroy_plan(p);
fftw_free(in);
fftw_free(out);
}
/*
2维 FFT
@param input [in] 输入数据,复数类型, rows*cols
@param output [out] fft2d计算结果, same size as input
@param rows [in] 矩阵行数
@param cols [in] 矩阵列数
http://www.fftw.org/fftw3_doc/Complex-Multi_002dDimensional-DFTs.html#Complex-Multi_002dDimensional-DFTs
*/
void fft2d(const vector<complex<float>>& input, vector<complex<float>>& output, int rows, int cols) {
fftwf_complex *in, *out;
fftwf_plan p;
in = (fftwf_complex*)fftwf_malloc(sizeof(fftwf_complex) * input.size());
out = (fftwf_complex*)fftwf_malloc(sizeof(fftwf_complex) * rows*cols);
for (int i = 0; i < input.size(); i++)
{
in[i][0] = input.at(i).real();
in[i][1] = input.at(i).imag();
}
p = fftwf_plan_dft_2d(rows, cols, in, out, FFTW_FORWARD, FFTW_ESTIMATE);
fftwf_execute(p); /* repeat as needed */
int size = rows * cols;
for (int i = 0; i < size; i++)
{
output.push_back({ out[i][0], out[i][1] });
}
fftwf_destroy_plan(p);
fftwf_free(in);
fftwf_free(out);
}
/*
********************************************************************************************
******************************实数计算FFT/IFFT**********************************************
***/
/*
计算实数FFT
@param input [in] data pointer to a float array
@param output [out] 2 x input_size,
output[0], [2], [4]... is real, output[1], [3], [5]... is imag
@param n [in]
*/
void fft1d(double* input, double* output, int n) {
double* in = (double*)fftw_malloc(sizeof(double)*n);
fftw_complex* out = (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * n);
memset(output,0, sizeof(double)*n);
for (int i = 0; i < n; i++)
{
in[i] = input[i];
out[i][0] = 0;
out[i][1] = 0;
}
fftw_plan p = fftw_plan_dft_r2c_1d(n, in, out, FFTW_ESTIMATE);
//fftw_execute(p);
fftw_execute_dft_r2c(p, in, out);
for (int i = 0; i < n; i++)
{
output[i * 2] = out[i][0]; //real
output[i * 2 + 1] = out[i][1]; //imag
}
fftw_destroy_plan(p);
fftw_free(in);
fftw_free(out);
}
/*
计算实数FFT
@param input [in] data pointer to a float array
@param output [out] 2 x input_size,
output[0], [2], [4]... is real, output[1], [3], [5]... is imag
@param n [in]
*/
void fft1d(float* input, float* output, int n) {
float* in = (float*)fftwf_malloc(sizeof(double)*n);
auto out = (fftwf_complex*)fftwf_malloc(sizeof(fftwf_complex) * n);
memset(output, 0, sizeof(float)*n);
for (int i = 0; i < n; i++)
{
in[i] = input[i];
}
auto p = fftwf_plan_dft_r2c_1d(n, in, out, FFTW_ESTIMATE);
fftwf_execute(p);
for (int i = 0; i < n; i++)
{
output[i * 2] = out[i][0]; //real
output[i * 2 + 1] = out[i][1]; //imag
}
fftwf_destroy_plan(p);
fftwf_free(in);
fftwf_free(out);
}
void fft2d(double* input, double* output, int rows, int cols){
double* in = (double*)fftw_malloc(sizeof(double)*rows*cols);
fftw_complex* out = (fftw_complex*)fftw_malloc(sizeof(fftw_complex)*rows*cols);
memset(output, 0, sizeof(double)*rows*cols*2);
int size = rows * cols;
for (int i = 0; i < size; i++)
{
in[i] = input[i];
}
auto p = fftw_plan_dft_r2c_2d(rows, cols, in, out, FFTW_ESTIMATE);
fftw_execute(p);
for (int i = 0; i < size; i++)
{
output[i] = out[i][0];
output[i * 2 + 1] = out[i][1];
}
fftw_destroy_plan(p);
fftw_free(in);
fftw_free(out);
}
void fft2d(float* input, float* output, int rows, int cols) {
float* in = (float*)fftwf_malloc(sizeof(float)*rows*cols);
fftwf_complex* out = (fftwf_complex*)fftwf_malloc(sizeof(fftwf_complex)*rows*cols);
memset(output, 0, sizeof(float)*rows*cols * 2);
int size = rows * cols;
for (int i = 0; i < size; i++)
{
in[i] = input[i];
}
auto p = fftwf_plan_dft_r2c_2d(rows, cols, in, out, FFTW_ESTIMATE);
fftwf_execute(p);
for (int i = 0; i < size; i++)
{
output[i] = out[i][0];
output[i * 2 + 1] = out[i][1];
}
fftwf_destroy_plan(p);
fftwf_free(in);
fftwf_free(out);
}
#if 0
void fft2d(const vector<complex<float>>& input, vector<complex<float>>& output, int rows, int cols) {
fftwf_complex* in = (fftwf_complex*)fftwf_malloc(sizeof(fftwf_complex)*rows*cols);
fftwf_complex* out = (fftwf_complex*)fftwf_malloc(sizeof(fftwf_complex)*rows*cols);
int cnt = 0;
for (auto& i:input)
{
in[cnt][0] = i.real();
in[cnt][1] = i.imag();
}
auto p = fftwf_plan_dft_2d(rows, cols, in, out, FFTW_FORWARD, FFTW_ESTIMATE);
fftwf_execute(p);
int sz = rows * cols;
for (int i = 0; i < sz; i++)
{
output.push_back({ out[i][0], out[i][1] });
}
fftwf_destroy_plan(p);
fftwf_free(in);
fftwf_free(out);
}
#endif
python
import numpy as np
import demo10.fft_demo as fft_demo
import matplotlib.pyplot as plt
import cv2
from scipy.fftpack import fftshift
x = np.array(range(0, 32), dtype=np.complex)
var1 = fft_demo.my_fft1d_complex(x)
print(var1)
var2 = fft_demo.my_fft1d_complex(np.sin(np.linspace(0, np.pi*4, 32,dtype=np.complex)))
plt.figure('fft1d_1')
plt.subplot(1, 2, 1)
plt.stem(np.real(x))
plt.subplot(1, 2, 2)
plt.stem(range(0, 32), np.abs(var1))
plt.figure('fft1d_2')
plt.subplot(1, 2, 1)
plt.stem(np.linspace(0, np.pi*4, 32), np.sin(np.linspace(0, np.pi*4, 32)))
plt.subplot(1, 2, 2)
plt.stem(np.linspace(0, np.pi*4, 32), np.abs(var2))
#plt.show()
# ---------------------FFT2d-------------------------------------------
image = cv2.imread('F:\\lena\\lena_gray.jpg', cv2.IMREAD_GRAYSCALE)
var3 = fft_demo.my_fft2d_img(image)
var4 = fftshift(var3)
var5 = np.log(np.abs(var4) + 1)
plt.figure('fft2d_1')
plt.subplot(1, 2, 1)
plt.axis('off')
plt.imshow(image, cmap=plt.gray())
plt.subplot(1, 2, 2)
plt.axis('off')
plt.imshow(var5, plt.gray())
plt.axis('off')
plt.show()
image.png
image.png
image.png
网友评论