一、流处理
在自然环境中,数据的产生原本就是流式的。无论是来自 Web 服务器的事件数据,证券交易所的交易数据,还是来自工厂车间机器上的传感器数据,其数据都是流式的。但是当你分析数据时,可以围绕 有界流(bounded)或 无界流(unbounded)两种模型来组织处理数据,当然,选择不同的模型,程序的执行和处理方式也都会不同。无界数据流
顾名思义,无界数据流就是指有始无终的数据,数据一旦开始生成就会持续不断的产生新的数据,即数据没有时间边界。无界数据流需要持续不断地处理。
有界数据流
相对而言,有界数据流就是指输入的数据有始有终。例如数据可能是一分钟或者一天的交易数据等等。处理这种有界数据流的方式也被称之为批处理。
二、Flink程序三大逻辑结构
- source:数据源,flink 在流处理和批处理上的 source 大概有 4 类:本地集合、文件、socket,自定义的 source(比如:kafka等)。
- transformations:各种类型的装换操作(比如:map, flatmap, reduce等)。
- sink:数据的汇或者是接收器,也有4中类型:文件、socket、打印出来、自定义sink(比如:kafka等)
通常,程序代码中的 transformation 和 dataflow 中的算子(operator)之间是一一对应的。但有时也会出现一个 transformation 包含多个算子的情况,如上图所示。
并行 Dataflows
Flink 程序本质上是分布式并行程序。在程序执行期间,一个流有一个或多个流分区(Stream Partition),每个算子有一个或多个算子子任务(Operator Subtask)。每个子任务彼此独立,并在不同的线程中运行,或在不同的计算机或容器中运行。
算子子任务数就是其对应算子的并行度。在同一程序中,不同算子也可能具有不同的并行度。
Flink 算子之间可以通过一对一(直传)模式或重新分发模式传输数据:
一对一(One-to-one)模式(例如上图中的 Source 和 map() 算子之间)可以保留元素的分区和顺序信息。这意味着 map() 算子的 subtask[1] 输入的数据以及其顺序与 Source 算子的 subtask[1] 输出的数据和顺序完全相同,即同一分区的数据只会进入到下游算子的同一分区。
重新分发(Redistribution)模式(例如上图中的 map() 和 keyBy/window 之间,以及 keyBy/window 和 Sink 之间)则会更改数据所在的流分区。当你在程序中选择使用不同的 transformation,每个算子子任务也会根据不同的 transformation 将数据发送到不同的目标子任务。例如以下这几种 transformation 和其对应分发数据的模式:keyBy()(通过散列键重新分区)、broadcast()(广播)或 rebalance()(随机重新分发)。在重新分发数据的过程中,元素只有在每对输出和输入子任务之间才能保留其之间的顺序信息(例如,keyBy/window 的 subtask[2] 接收到的 map() 的 subtask[1] 中的元素都是有序的)。因此,上图所示的 keyBy/window 和 Sink 算子之间数据的重新分发时,不同键(key)的聚合结果到达 Sink 的顺序是不确定的。
三、窗口
窗口是无限流处理中的一个概念,它将流拆分成一个个的“桶”,我们再基于这些桶的数据做计算。
流处理中的聚合操作(counts,sums等等)不同于批处理,因为数据流是无限,无法在其上应用聚合,所以通过限定窗口(window)的范围,来进行流的聚合操作。例如:5分钟的数据计数,或者计算100个元素的总和等等。
窗口可以由时间驱动 (every 30 seconds) 或者数据驱动(every 100 elements)。如:滚动窗口tumbling windows(无叠加),滑动窗口sliding windows(有叠加),以及会话窗口session windows(被无事件活动的间隔隔开)
四、检查点
基于检查点的容错是Flink的关键特征之一,正式基于这样的设计,Flink才可以统一批流处理。Flink 容错机制的核心就是持续创建分布式数据流及其状态的一致快照。这些快照在系统遇到故障时,充当可以回退的一致性检查点(checkpoint)
分布式快照引入了数据栅栏(barrier)的概念,barrier 被插入到数据流中,作为数据流的一部分和数据一起向下流动。Barrier 不会干扰正常数据,数据流严格有序。一个 barrier 把数据流分割成两部分:一部分进入到当前快照,另一部分进入下一个快照。每一个 barrier 都带有快照 ID,并且 barrier 之前的数据都进入了此快照。Barrier 不会干扰数据流处理,所以非常轻量。多个不同快照的多个 barrier 会在流中同时出现,即多个快照可能同时创建。
Barrier 在数据源端插入,当 snapshot n 的 barrier 插入后,系统会记录当前 snapshot 位置值 n (用Sn表示)。例如,在 Apache Kafka 中,这个变量表示某个分区中最后一条数据的偏移量。这个位置值 Sn 会被发送到一个称为 checkpoint coordinator 的模块。
然后 barrier 继续往下流动,当一个 operator 从其输入流接收到所有标识 snapshot n 的 barrier 时,它会向其所有输出流插入一个标识 snapshot n 的 barrier。当 sink operator (DAG 流的终点)从其输入流接收到所有 barrier n 时,它向 the checkpoint coordinator 确认 snapshot n 已完成。当所有 sink 都确认了这个快照,快照就被标识为完成。
接收超过一个输入流的 operator 需要基于 barrier 对齐(align)输入。参见上图:
- operator 只要一接收到某个输入流的 barrier n,它就不能继续处理此数据流后续的数据,直到 operator 接收到其余流的 barrier n。否则会将属于 snapshot n 的数据和 snapshot n+1的搞混
- barrier n 所属的数据流先不处理,从这些数据流中接收到的数据被放入接收缓存里(input buffer)
- 当从最后一个流中提取到 barrier n 时,operator 会发射出所有等待向后发送的数据,然后发射snapshot n 所属的 barrier
*经过以上步骤,operator 恢复所有输入流数据的处理,优先处理输入缓存中的数据
五、状态
只有在每一个单独的事件上进行转换操作的应用才不需要状态,换言之,每一个具有一定复杂度的流处理应用都是有状态的。任何运行基本业务逻辑的流处理应用都需要在一定时间内存储所接收的事件或中间结果,以供后续的某个时间点(例如收到下一个事件或者经过一段特定时间)进行访问并进行后续处理。状态有两种形式:
- 用户自定义状态:由 算子直接创建或者修改的状态。
-
系统状态:这种状态是指作为算子计算中一部分缓存数据。
网友评论