美文网首页
线代--矩阵对角化

线代--矩阵对角化

作者: Norahd | 来源:发表于2023-01-17 21:06 被阅读0次

基于矩阵相似A = P{^-1} B P,寻找一个最优坐标系对标准坐标系下的B变换进行描述,使得到一个非常简单的A变换从而帮助加速运算--该问题应用矩阵对角化进行求解。

矩阵对角化: A = PDP^{-1},其中D表示对角矩阵D = \begin{bmatrix} d_1&0&...&0 \\ 0&d_2&...&0 \\ ...&...&...&... \\ 0&0&...&d_n\end{bmatrix}

对于一个变换矩阵A,尝试寻找一个P坐标系,在该坐标系下A变换可以被描述为一个对角形式的矩阵D;因为对角矩阵在变换运算时的运算量是最小的,所以是在其它坐标系下寻找一个矩阵的最简相似矩阵的目标是寻找一个对角矩阵D,这个矩阵D与矩阵A表示同等变换。

要在一个P坐标系下寻找到一个A变换矩阵的对角矩阵,前提要求矩阵An个线性无关的特征向量。所以只要A矩阵存在有n个线性无关的特征向量,那么就一定存在它在P坐标系下描述的对角矩阵。

矩阵的对角化属于矩阵分解的一种方法;在A = PDP^{-1}的分解过程中,分解出的矩阵P由矩阵A的特征向量构成,矩阵D由矩阵A的特征值构成:

D = \begin{bmatrix} \lambda_1&0&...&0 \\ 0&\lambda_2&...&0 \\ ...&...&...&... \\ 0&0&...&\lambda_n\end{bmatrix} \ \ \ \ \ \ \ \ \ \ \ P = \begin{bmatrix} |&|& &| \\ \vec u_1& \vec u_2&...& \vec u_n \\ |&|& &| \end{bmatrix}

对于等式 A = PDP^{-1}
\ \ \ \ \ \ \ \ \ \ \ \ \ AP = PDP^{-1}P = PDI = PD
\ \ \ \ \ \ \ \ \ \ \ \ \ AP = PD
联系特征值与特征向量A\vec u = \lambda \vec u 可知,当P由特征向量组成,D由特征值\lambda组成该等式成立

AP = A * \begin{bmatrix} |&|& &| \\ \vec u_1& \vec u_2&...& \vec u_n \\ |&|& &| \end{bmatrix} = \begin{bmatrix} |&|& &| \\ A\vec u_1& A\vec u_2&...& A\vec u_n \\ |&|& &| \end{bmatrix} = \begin{bmatrix} |&|& &| \\ \lambda\vec u_1& \lambda\vec u_2&...& \lambda\vec u_n \\ |&|& &| \end{bmatrix}

PD = \begin{bmatrix} |&|& &| \\ \vec u_1& \vec u_2&...& \vec u_n \\ |&|& &| \end{bmatrix} * \begin{bmatrix} \lambda_1&0&...&0 \\ 0&\lambda_2&...&0 \\ ...&...&...&... \\ 0&0&...&\lambda_n\end{bmatrix} = \begin{bmatrix} |&|& &| \\ \lambda\vec u_1& \lambda\vec u_2&...& \lambda\vec u_n \\ |&|& &| \end{bmatrix}

从而, 当我们从A矩阵的特征向量组成的P矩阵的视角来看待A所代表的变换,A矩阵的表现形式最简。

性质推广
  • 如果An个不同的特征值,意味着一定存在n个两两线性无关的特征向量,则A一定可以被对角化。
  • 如果A没有n个不同的特征值(实数域内重数>1),则A不一定不能被对角化,关键在于是否可以找到n个不同的线性无关特征向量。
    • 如单位矩阵A = \begin{bmatrix} 1&0 \\ 0&1 \end{bmatrix}, \det (A - \lambda I ) = 0 \rightarrow \lambda _1= \lambda _2 = 1特征值重数为1,虽然它没有两个不同的特征值,但是可以找到它的两个不同的特征向量\vec u = (1,0), \vec v = (0,1),所以单位矩阵可以被对角化,不过其本身就是一个对角矩阵了。
    • 像矩阵A = \begin{bmatrix} 3&1 \\ 0&3 \end{bmatrix}, \det (A - \lambda I ) = 0 \rightarrow \lambda _1= \lambda _2 = 3特征值重数为1,但是其特征向量只有一组,所以无法被对角化。
对角化的重要应用--求解矩阵的幂

A = PDP^{-1}
A^{2} = PDP^{-1}*PDP^{-1} = PDIDP^{-1} = PD^2P^{-1}
...
A^{m} = PD^mP^{-1}

对于对角矩阵的幂 D = \begin{bmatrix} \lambda_1&0&...&0 \\ 0&\lambda_2&...&0 \\ ...&...&...&... \\ 0&0&...&\lambda_n\end{bmatrix}

D^2 = \begin{bmatrix} \lambda_1&0&...&0 \\ 0&\lambda_2&...&0 \\ ...&...&...&... \\ 0&0&...&\lambda_n\end{bmatrix} * \begin{bmatrix} \lambda_1&0&...&0 \\ 0&\lambda_2&...&0 \\ ...&...&...&... \\ 0&0&...&\lambda_n\end{bmatrix} = \begin{bmatrix} \lambda ^{2}_1&0&...&0 \\ 0&\lambda ^{2}_2&...&0 \\ ...&...&...&... \\ 0&0&...&\lambda ^{2}_n\end{bmatrix}

D^m = \begin{bmatrix} \lambda ^{m}_1&0&...&0 \\ 0&\lambda ^{m}_2&...&0 \\ ...&...&...&... \\ 0&0&...&\lambda ^{m}_n\end{bmatrix}

A^{m} = P \begin{bmatrix} \lambda ^{m}_1&0&...&0 \\ 0&\lambda ^{m}_2&...&0 \\ ...&...&...&... \\ 0&0&...&\lambda ^{m}_n\end{bmatrix}P^{-1} 简化了大量的矩阵运算

在现实中,遇到的大量属于动态系统范畴的问题(随着时间推移,对象的状态也在不断变化,这种变化可以被矩阵的形式所表征),从而k时刻的状态 \vec u_k = A^k\vec u_0 = P D^{k} P^{-1} \vec u_0;比如对处于随机过程中的对象进行观测,它处于不同状态的概率被向量\vec u所描述,相应的随着时间的推进,对象会不断变化,这种概率变化过程就可以被矩阵A所表征。

对于动态系统的描述方程 \vec u_k = A^k\vec u_0 = P D^{k} P^{-1} \vec u_0A表征的变化就是D,只是D这个形式矩阵要在P坐标系下进行描述,由A矩阵的特征值组成的D矩阵同时描述了在各时刻下\vec u_0的状态,所以特征值反映了研究对象的各个分量的速率,这个速率(被描述在P坐标系下)。

相关文章

  • 线代--矩阵对角化

    基于矩阵相似,寻找一个最优坐标系对标准坐标系下的变换进行描述,使得到一个非常简单的变换从而帮助加速运算--该问题应...

  • 【MIT】22-Diagonalization and Powe

    内容 本讲的主要内容是:矩阵A的对角化以及A矩阵的幂。 ● - 矩阵A的对角化:什么样的A才能对角化,矩阵A(nx...

  • 线代-对称矩阵与正交对角化

    对称矩阵:矩阵上的所有元素关于主对角线对称,满足 对称矩阵的重要性质 对于对称矩阵来说,其特征值一定是实数; 尽管...

  • 线性代数之——对角化和 A 的幂

    利用特征向量的属性,矩阵 可以变成一个对角化矩阵 。 1. 对角化 假设一个 的矩阵 有 个线性不相关的特...

  • 相似矩阵(近似对角化) 、奇异值分解

    相似矩阵、相似于对角阵(最好情况)、Jordan型(由Jordan块构成)、不可对角化的矩阵可以近似"对角化" 奇...

  • 线性代数笔记22

    对角化和A的幂 将A对角化 S:将矩阵A的特征向量按列组成矩阵S,A的特征向量矩阵而S需要是可逆的所以需要n个线性...

  • 学习_矩阵对角化和SVD

    1.矩阵对角化矩阵对角化和SVD可以达到特征值分解的目的,特征值分解是将矩阵分解为特征向量和特征值相乘的形式。对角...

  • 考研冲刺线代之李林四套卷线代大题思路

    2023考研线代李林四套卷线代大题总结整理。线代感觉搞去搞来都那些东西,大题大部分都考二次型,相似对角化这些。 要...

  • 矩阵对角化

    对角矩阵:只有主对角线上含有非零元素的矩阵。 对于一个矩阵来说,不一定存在将其对角化的矩阵,但是任意一个矩阵如果存...

  • 线代-奇异值

    特征值,特征向量,相似性,对角化,对称矩阵,正交对角化等系列概念均基于方阵提出。 而现实中通常要处理的矩阵都属于长...

网友评论

      本文标题:线代--矩阵对角化

      本文链接:https://www.haomeiwen.com/subject/jmqxhdtx.html