- 题意
- 思路:由于是单调递增函数,我们可以从开始,表示在横坐标为以及纵坐标为的举行范围内搜索答案。分类讨论:
- 如果,那么对于任意的,都有,这说明固定,无论怎样枚举,都无法找到答案,那么将加一,缩小搜索范围;
- 如果,那对于任意,都有,这说明固定枚举其余无法找到答案,那么将减一,缩小搜索范围;
- 如果,那么记录答案,同情况1一样,将加一。由于,根据情况2,可以同时将减一。
- 不断循环直到或为止,此时搜索范围为空。
- 代码:
C++代码:
/*
* // This is the custom function interface.
* // You should not implement it, or speculate about its implementation
* class CustomFunction {
* public:
* // Returns f(x, y) for any given positive integers x and y.
* // Note that f(x, y) is increasing with respect to both x and y.
* // i.e. f(x, y) < f(x + 1, y), f(x, y) < f(x, y + 1)
* int f(int x, int y);
* };
*/
class Solution {
public:
vector<vector<int>> findSolution(CustomFunction& f, int z) {
vector<vector<int>> res;
int i = 1, j = 1000;
while(i <= 1000 && j >= 1) {
if (f.f(i, j) == z) res.push_back({i ++, j --});
if (f.f(i, j) > z) --j;
if (f.f(i, j) < z) ++i;
}
return res;
}
};
Python代码
"""
This is the custom function interface.
You should not implement it, or speculate about its implementation
class CustomFunction:
# Returns f(x, y) for any given positive integers x and y.
# Note that f(x, y) is increasing with respect to both x and y.
# i.e. f(x, y) < f(x + 1, y), f(x, y) < f(x, y + 1)
def f(self, x, y):
"""
class Solution:
def findSolution(self, customfunction: 'f', z: int) -> List[List[int]]:
res = []
i, j = 1, 1000
while(i <=1000 and j >= 1):
if customfunction.f(i, j) == z:
res.append([i, j])
i += 1
j += 1
if customfunction.f(i, j) < z: i += 1
if customfunction.f(i, j) > z: j -= 1
return res
- 分析
- 时间复杂度:;
- 空间复杂第:。
网友评论