需要用到的import
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import StepLR
加载mnist数据
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307), (0.3015))
])
train_data = datasets.MNIST(
root='mnist',
train=True,
download=True,
transform=transform
)
test_data = datasets.MNIST(
root='mnist',
train=False,
download=True,
transform=transform
)
batch_size = 64
train_loader = torch.utils.data.DataLoader(
train_data,
batch_size=batch_size,
shuffle=True
)
test_loader = torch.utils.data.DataLoader(
test_data,
batch_size=batch_size
)
模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.pool = nn.MaxPool2d(2, 2)
self.dropout1 = nn.Dropout(0.25)
self.dropout2 = nn.Dropout(0.5)
self.fc1 = nn.Linear(9216, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.relu(x)
x = self.pool(x)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
output = F.log_softmax(x, dim=1)
return output
加载上一次训练的参数(如果参数文件存在)
model = Net()
path = 'mnist_state.pth'
if os.path.exists(path):
model.load_state_dict(torch.load(path))
优化器
optimizer = optim.Adadelta(model.parameters(), lr=1.)
scheduler = StepLR(optimizer, step_size=1, gamma=0.7)
训练和测试方法
def train(model, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print('epoch', epoch)
print('loss', loss.item())
def test(model, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
output = model(data)
test_loss += F.nll_loss(output, target).sum().item()
pred = torch.argmax(output, 1)
correct += pred.eq(target).sum().float().item()
test_loss /= len(test_loader.dataset)
correct /= len(test_loader.dataset)
print('test loss: ', test_loss)
print('acc', correct * 100)
开始训练
for i in range(2):
train(model, train_loader, optimizer, i)
test(model, test_loader)
scheduler.step()
保存训练参数
torch.save(model.state_dict(), path)
完结,做个笔记。
网友评论