分治
在计算机科学中,分治法是一种很重要的算法。字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)……
任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。问题的规模越小,越容易直接求解,解题所需的计算时间也越少。例如,对于n个元素的排序问题,当n=1时,不需任何计算。n=2时,只要作一次比较即可排好序。n=3时只要作3次比较即可,…。而当n较大时,问题就不那么容易处理了。要想直接解决一个规模较大的问题,有时是相当困难的。
二、基本思想及策略
分治法的设计思想是:将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。
分治策略是:对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。这种算法设计策略叫做分治法。
如果原问题可分割成k个子问题,1<k≤n,且这些子问题都可解并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的。由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。
三、分治法适用的情况
分治法所能解决的问题一般具有以下几个特征:
-
该问题的规模缩小到一定的程度就可以容易地解决
-
该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。
-
利用该问题分解出的子问题的解可以合并为该问题的解;
-
该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;
第二条特征是应用分治法的前提它也是大多数问题可以满足的,此特征反映了递归思想的应用;、
第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑用贪心法或动态规划法。
第四条特征涉及到分治法的效率,如果各子问题是不独立的则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。
分治步骤
step1 分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;
step2 解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题
step3 合并:将各个子问题的解合并为原问题的解。
归并排序
归并排序的关键在于归并两个相邻的子序列,使其变成一个排序好的新序列。如果这个新序列就是原来需要进行排序的数组,那么排序完成。所以,我们需要将原序列递归地分成若干子序列,直道最小的子序列只有一个元素,然后将子序列依次归并,就可以得到排序好的原序列。
代码
package test;
import java.util.Arrays;
/**
* Created by liqiushi on 2017/12/26.
*/
public class MergeSort {
public static void sort(int arr[], int low, int high) {
int mid = (low + high) / 2;
if (low < high) {
//0 1
sort(arr, low, mid);//0 0、
sort(arr, mid + 1, high);//1 1
merge(arr,low,mid,high);
}
}
/**
* 有序地合并两个数组
*
* @param arr
* @param low
* @param mid
* @param high
*/
public static void merge(int arr[], int low, int mid, int high) {
int[] sortArr = new int[high-low+1];
int i = 0;
int j = low;
int k = mid+1;
while (j <= mid && k <= high) {
if (arr[j] <= arr[k]) {
sortArr[i++] = arr[j++];
} else {
sortArr[i++] = arr[k++];
}
}
while (j > mid && k <= high) {
sortArr[i++] = arr[k++];
}
while (k > high && j <= mid) {
sortArr[i++] = arr[j++];
}
for (int l = 0; l < sortArr.length; l++) {
arr[low+l] = sortArr[l];
}
}
public static void main(String[] args) {
int[] arr = {1, 5, 8, 4, 6, 78, 26, 13, 66};
sort(arr, 0, arr.length - 1);
System.out.println(Arrays.toString(arr));
//arr,low,high
//sort(arr,0,arr.length-1);
}
}
网友评论