美文网首页
数据结构与算法(C#实现)002--线性表的应用之多项式相加

数据结构与算法(C#实现)002--线性表的应用之多项式相加

作者: 周老一员 | 来源:发表于2018-05-01 18:18 被阅读0次

    一、多项式的表示

      一元多项式的数学表达式为:$f(x) = a_0 + a_1x + \cdot\cdot\cdot + a_{n-1}x^{n-1} + a_nx^n$,其中关键数据就是非零项的系数 $a_i$ 和指数 $i$ ,可以采用 线性表 结构来存储,为使得多项式相加更加方便,将按照指数从大到小的顺序*存储非零项。

    二、多项式中的非零项

    /// <summary>
    /// 多项式的非零项
    /// </summary>
    public class PolynomialTerm
    {
        /// <summary>
        /// 系数
        /// </summary>
        public int Coefficient { get; set; }
    
        /// <summary>
        /// 指数
        /// </summary>
        public int Exponential { get; set; }
    
        /// <summary>
        /// 构造方法
        /// </summary>
        /// <param name="coeff">非零系数</param>
        /// <param name="expon">指数</param>
        public PolynomialTerm(int coeff, int expon)
        {
            Coefficient = coeff;
            Exponential = expon;
        }
    }
    

    三、以单链表结构存储多项式,并实现多项式相加

    注:这里的LinkList<PolynomialTerm>就是应用了上一篇线性表中单链表的结构LinkList<T>

    /// <summary>
    /// 多项式--单链表
    /// </summary>
    public class Polynomial_LinkList
    {
        /// <summary>
        /// 多项式表达式
        /// </summary>
        private LinkList<PolynomialTerm> Polynomial { get; set; }
    
        /// <summary>
        /// 构造函数
        /// </summary>
        public Polynomial_LinkList()
        {
            Polynomial = new LinkList<PolynomialTerm>();
        }
    
        /// <summary>
        /// 添加新项
        /// </summary>
        /// <param name="coeff">新项系数</param>
        /// <param name="expon">新项指数</param>
        public void AddTerm(int coeff, int expon)
        {
            PolynomialTerm term = new PolynomialTerm(coeff, expon);
            
            // 多项式表达式为空时,直接附加
            if (Polynomial.IsEmpty())
            {
                Polynomial.Append(term);
                return;
            }
    
            // 在多项式表达式(已排序)中找到恰好比新项指数小的那一项
            // 如果找到,就插入,否则附加
            int i = 1;
            for (; i <= Polynomial.GetLength(); i++)
            {
                int exponCurrent = Polynomial.GetElem(i).Exponential;
                if (expon == exponCurrent)
                {
                    throw new Exception("多项式中已存在系数相同的项");
                }
                if (expon > exponCurrent)
                {
                    Polynomial.Insert(term, i);
                    break;
                }
            }
            if (i > Polynomial.GetLength())
            {
                Polynomial.Append(term);
            }
        }
    
        /// <summary>
        /// 添加新项
        /// </summary>
        /// <param name="term">新项</param>
        public void AddTerm(PolynomialTerm term)
        {
            if (Polynomial.IsEmpty())
            {
                Polynomial.Append(term);
                return;
            }
            int i = 1;
            for (; i <= Polynomial.GetLength(); i++)
            {
                int exponList = Polynomial.GetElem(i).Exponential;
                if (term.Exponential == exponList)
                {
                    throw new Exception("多项式中已存在系数相同的项");
                }
                if (term.Exponential > exponList)
                {
                    Polynomial.Insert(term, i);
                    break;
                }
            }
            if (i > Polynomial.GetLength())
            {
                Polynomial.Append(term);
            }
        }
    
        /// <summary>
        /// 多项式表达式的表现形式
        /// </summary>
        /// <returns></returns>
        public override string ToString()
        {
            string polynomialStr = "";
            int len = Polynomial.GetLength();
            for (int i = 1; i <= len; i++)
            {
                PolynomialTerm term = Polynomial.GetElem(i);
                polynomialStr += $"({term.Coefficient},{term.Exponential}), ";
            }
            return polynomialStr.Trim();
        }
    
        /// <summary>
        /// 多项式相加
        /// </summary>
        /// <param name="Polynomial_1">多项式1</param>
        /// <param name="Polynomial_2">多项式2</param>
        /// <returns></returns>
        public static Polynomial_LinkList operator +(Polynomial_LinkList Polynomial_1, Polynomial_LinkList Polynomial_2)
        {
            Polynomial_LinkList Polynomial = new Polynomial_LinkList();
            int k_1 = 1, k_2 = 1;
            int len_1 = Polynomial_1.Polynomial.GetLength();
            int len_2 = Polynomial_2.Polynomial.GetLength();
    
            // 从头开始,比较两个多项式当前对应项的指数
            // 如果相加的两项指数相等,则将系数相加,将相加得到的系数(非零)和指数存入到新多项式中,两个多项式的比较项同时向后移动一位
            // 否则将指数较大的那一项直接存入到新多项式中,并在指数较大那一项所在的多项式中,将当前项向后移动一位
            // 移动直到其中一个多项式已比较完毕,则将另一个多项式的剩余项直接依次存入到新多项式中
            while (k_1 <= len_1 && k_2 <= len_2)
            {
                PolynomialTerm term1 = Polynomial_1.Polynomial.GetElem(k_1);
                PolynomialTerm term2 = Polynomial_2.Polynomial.GetElem(k_2);
                if (term1.Exponential == term2.Exponential)
                {
                    int expon = term1.Exponential;
                    int coeff = term1.Coefficient + term2.Coefficient;
                    if (coeff != 0)
                    {
                        Polynomial.AddTerm(coeff, expon);
                    }
                    k_1++;
                    k_2++;
                }
                else if (term1.Exponential > term2.Exponential)
                {
                    Polynomial.AddTerm(term1);
                    k_1++;
                }
                else
                {
                    Polynomial.AddTerm(term2);
                    k_2++;
                }
            }
            for (; k_1 <= len_1; k_1++)
            {
                PolynomialTerm term1 = Polynomial_1.Polynomial.GetElem(k_1);
                Polynomial.AddTerm(term1);
            }
            for (; k_2 <= len_2; k_2++)
            {
                PolynomialTerm term2 = Polynomial_2.Polynomial.GetElem(k_2);
                Polynomial.AddTerm(term2);
            }
            return Polynomial;
        }
    }
    

    四、测试

    using System;
    using System.Collections.Generic;
    
    class Program
    {
        static void Main(string[] args)
        {
            #region----------多项式相加(单链表)----------
            Console.WriteLine("多项式相加(单链表):");
            Polynomial_LinkList polynomialLink_1 = new Polynomial_LinkList();
            polynomialLink_1.AddTerm(3, 2);
            polynomialLink_1.AddTerm(15, 8);
            polynomialLink_1.AddTerm(9, 12);
            Console.WriteLine("多项式1:" + polynomialLink_1.ToString());
            Polynomial_LinkList polynomialLink_2 = new Polynomial_LinkList();
            polynomialLink_2.AddTerm(82, 0);
            polynomialLink_2.AddTerm(-13, 6);
            polynomialLink_2.AddTerm(-4, 8);
            polynomialLink_2.AddTerm(26, 19);
            Console.WriteLine("多项式2:" + polynomialLink_2.ToString());
            Polynomial_LinkList polynomialLink = polynomialLink_1 + polynomialLink_2;
            Console.WriteLine("多项式1 + 多项式2:" + polynomialLink.ToString());
            #endregion
    
            Console.ReadKey();
        }
    }
    
    结果:

    相关文章

      网友评论

          本文标题:数据结构与算法(C#实现)002--线性表的应用之多项式相加

          本文链接:https://www.haomeiwen.com/subject/jpkfrftx.html